中国古代数学的历史

网上有关“中国古代数学的历史”话题很是火热,小编也是针对中国古代数学的历史寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

春秋前中国数学的萌芽

我们的先民在从野蛮走向文明的漫长历程中,逐渐认识了数与形的概念。出土的新石器时期的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,都是几何知识的萌芽。先秦典籍中有“隶首作数”、“结绳记事”、“刻木记事”的记载,说明人们从辨别事物的多寡中逐渐认识了数,并创造了记数的符号。殷商甲骨文(公元前14—前11世纪)中已有13个记数单字,最大的数是“三万”,最小的是“一”。一、十、百、千、万,各有专名。其中已经蕴含有十进位置值制萌芽。传说伏羲创造了画圆的“规”、画方的“矩”,也传说黄帝臣子倕[chui垂]是“规矩”和“准绳”的创始人。早在大禹治水时,禹便“左准绳”(左手拿着准绳),“右规矩”(右手拿着规矩)(《史记·禹本纪》)。因此,我们可以说,“规”、“矩”、“准”、“绳”是我们祖先最早使用的数学工具。人们丈量土地面积,测算山高谷深,计算产量多少,粟米交换,制定历法,都需要数学知识。《周髀〔bi婢〕算经》载商高答周公问,提到用矩测望高深广远。相传西周初年周公(公元前11世纪)制礼,数学成为贵族子弟教育中六门必修课程——六艺之一。不过当时学在官府,数学的发展是相当缓慢的。

春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时王权衰微,畴人四散,私学开始出现。最晚在春秋末年人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。人们已谙熟九九乘法表、整数四则运算,并使用了分数。

战国至两汉中国数学框架的确立

战国时期,各诸侯国相继完成了向封建制度的过渡。思想界、学术界诸子林立,百家争鸣,异常活跃,为数学和科学技术的发展创造了良好的条件。尽管没有一部先秦的数学著作留传到后世,但是,人们通过田地及国土面积的测量,粟米的交换,收获及战利品的分配,城池的修建,水利工程的设计,赋税的合理负担,产量的计算,以及测高望远等生产生活实践,积累了大量的数学知识。据东汉初郑众记载,当时的数学知识分成了方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要九个部分,称为“九数”。九数确立了《九章算术》的基本框架。

秦始皇结束了列国纷争,首次建立了中央集权的封建帝国,本应有利于数学的发展。但他的专制政策窒息了百家争鸣的学术空气。秦朝的残暴统治,尤其是焚书坑儒,给中国文化事业造成空前的浩劫。不久,刘邦利用推翻暴秦的农民起义,统一了中国,建立了汉朝,史称西汉。西汉政府与民生息,社会生产力得到恢复、发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。《九章算术》(省称《九章》)是中国最重要的数学经典,它之于中国和东方数学,大体相当于《几何原本》之于希腊和欧洲数学。在世界古代数学史上,《九章》与《原本》像两颗璀灿的明珠,东西辉映。

《九章》之前还有一部《周髀算经》,它本是一部以数学方法阐述盖天说的天文著作,一般认为于公元前1世纪成书。卷上记载了商高答周公问,陈子答荣方问。前者有勾股定理的特例32+42=52,后者有用勾股定理及比例算法测太阳高远及直径的内容。近年湖北省张家山出土的竹简《算数书》正在整理,其少广一问与《九章》少广章第1问基本相同,两者的关系有待于研究。

《九章》集先秦到西汉数学知识之大成。据东汉末大学者郑玄(公元127—200年)引东汉初郑众(?—公元83年)说,西汉在先秦九数基础上又发展出勾股、重差两类数学方法。魏刘徽说:《九章》是由九数发展而来的,由于秦朝焚书而散坏。西汉张苍(?—公元前152年)、耿寿昌(公元前1世纪)收集秦火遗残,加以整理删补,便成为《九章算术》。方田章提出了完整的分数运算法则,各种多边形、圆、弓形等的面积公式;粟米章提出了比例算法;衰[cui崔]分①章提出了比例分配法则;少广章给出了完整的开平方、开立方程序;商功章讨论各种立体体积公式及工程分配方法;均输章解决赋役中的合理负担,也是比例分配问题,还有若干结合西汉社会实际的算术杂题;盈不足章解决盈亏问题及可以用盈不足术解决的一般算术问题;方程章是线性方程组解法,并给出了正负数加减法则;勾股章由旁要发展而成,提出了勾股定理、解勾股形及若干测望问题的方法。全书以计算为中心,有90余条抽象性算法、公式,246道例题及其解法,基本上采取算法统率应用问题的形式。它的许多成就居世界领先地位,奠定了此后中国数学居世界前列千余年的基础。《九章》分类不甚合理,没有任何定义和推导,少数公式不准确,个别公式有错误,则是不容讳言的缺点。《九章》的框架、形式、风格和特点深刻影响了中国和东方的数学。

《九章算术》成书后,注家蜂起。《汉书·艺文志》所载《许商算术》、《杜忠算术》(公元前1世纪)估计为研究《九章》的作品。东汉马续、张衡、刘洪、郑玄、徐岳、王粲等通晓《九章算术》,或为之作注。这些著作都未传世,从后来刘徽(今山东邹平人,生卒不详)《九章算术注》所反映的信息看,这些研究基本上停留在归纳验证《九章算术》的正确性方面,理论上未能在《九章》基础上作出长足进步。

魏晋至唐初中国数学理论体系的建立

《九章算术》之后,中国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。经过两汉社会经济和科学技术的大发展,到魏晋,中国封建社会进入一个新的阶段,庄园农奴制和门阀士族占据了经济政治舞台的中心。思想文化领域中,儒家的统治地位被削弱,谶纬迷信和繁琐的经学退出历史舞台,代之以谈三玄——《周易》、《老子》、《庄子》为主的辩难之风。学者们通过析理,探讨思维规律,思想界出现了战国的百家争鸣以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把自先秦到两汉积累起来的数学知识建立在必然的可靠的基础之上。刘徽和他的《九章算术注》便是这个时代造就的最伟大的数学家和最杰出的数学著作。

大约与刘徽同时或稍前,有赵爽(又名婴,字君卿,生卒不详,估计是三国吴人)的《周髀算经注》,其可观者为“勾股圆方图”,用600余字概括了两汉以来勾股算术的成果。

刘徽《九章算术注》作于魏景元四年(公元263年),原十卷。前九卷全面论证了《九章》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了《九章》的某些不精确的或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术,用十进分数逼近无理根的近似值等,使用了大量类比、归纳推理及演绎推理,并且以后者为主。第十卷原名重差,为刘徽自撰自注,发展完善了重差理论,此卷后来单行,因第一问为测望一海岛的高远,名之曰《海岛算经》。他还著有《九章重差图》一卷,已佚。刘徽生活在辩难之风兴起而尚未流入清谈的魏晋之交,受思想界“析理”的影响,对《九章算术》“析理以辞,解体用图”(《九章算术注·序》),并对各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。刘徽博览群书,谙熟诸子百家,他不迷信古人,敢于创新,实事求是。对他未能解决的牟合方盖,坦诚直书,表示“以俟能言者”(《九章算术·少广章注》),表现了一位伟大学者寄希望于后学的坦荡胸怀。

《孙子算经》三卷,常被误认为春秋军事家孙武所著,实际上是公元400年前后的作品,作者不详。这是一部数学入门读物,给出了筹算记数制度及乘除法则等预备知识,其河上荡杯、鸡兔同笼等问题后来在民间广泛流传,“物不知数”题则开一次同余式解法之先河。张丘建(今山东人,生平不详)著的《张丘建算经》三卷,成书于北魏(5世纪下半叶)。此书补充了等差级数的若干公式,其百鸡问题是著名的不定方程问题,后世十分重视。

《缀术》包含了祖冲之(公元429—500年)和儿子祖暅〔geng 更〕之(一作祖暅,生平不详)的数学贡献。由于其内容深奥,隋唐算学馆学官(相当于今天大学数学系教授)读不懂,遂失传。据认为,将圆周率精确到八位有效数字、球体积的解决及含有负系数的二次、三次方程皆是其中的内容。祖冲之,字文远,祖籍范阳逎(今河北省涞源县)人。刘宋大明六年(公元462年)造大明历,使用岁差,改革闰制。他的改革遭到守旧派官僚戴法兴的反对,祖冲之不畏权势,据理驳斥,坚持了反对谶纬迷信,不虚推古人,实事求是的科学精神。他对机械深有研究,制造过水碓、水磨、指南车、千里船、漏壶等,并著《安边论》、《述异记》等。祖暅之,字景烁。从小爱好数学,巧思入神,极其精微。专心致志之时,雷霆不能入。有一次走路时思考问题,仆射徐勉迎面而来竟然没有发现,头撞到徐勉身上,徐勉唤他,他才知道撞了人。其父的《大明历》经他的努力在梁朝颁行。

北周甄鸾(今河北无极人,生卒不详)有三部数学著作传世,即《五曹算经》、《五经算术》、《数术记遗》。前二部内容浅近,无足道者。《数术记遗》一卷,传本题(东)汉徐岳撰、北周甄鸾注,近人多以为系甄鸾自撰自注,假托徐岳。书中记载了三种大数进位制及14种算法,其中珠算虽不同于元明的珠算盘,然开后者之先河,似无可疑。

隋唐是中国封建社会经济政治文化的鼎盛时期,然而数学上除天文历法研究中刘焯(公元544—610年)创造等间距内插公式(7世纪初)和僧一行(公元683—727年)创造不等间距内插公式(8世纪)外,几无创造,数学成就及理论水平远远低于魏晋南北朝。唐初王孝通(生卒不详)撰《缉古算经》一卷,解决了若干复杂的土方工程及勾股问题,且都用三次或四次方程解决,是为现存记载三次、四次方程的最早著作。然而,《缉古算经》未必是高于《缀术》的著作。王孝通是历算博士,曾任太史丞,在天文历法方面是保守的。他在《上〈缉古算经〉表》中指责《缀术》全错不通,于理未尽,大约他与当时别的数学家一样读不懂《缀术》。他自诩他的《缉古算经》千金不能排其一字,他一旦瞑目,其方法后人莫晓。科学家不必作谦谦君子,但如此狂妄,也是不足取的。

隋唐统治者在国子监设算学馆,置算学博士、助教指导学生学习。唐李淳风等奉敕于显庆元年(公元656年)为《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等十部算经作注,作为算学馆教材,这就是著名的《算经十书》,该书是中国古代数学奠基时期的总结。李淳风等注释保存了许多宝贵资料,但注释水平并不高。由于种种原因,算学馆实际未培养出像样的数学家。

唐中叶至宋元中国数学的高潮

经过盛唐的大发展,唐中叶之后,生产关系和社会各方面逐渐产生新的实质性变革,到10世纪下半叶,赵匡胤建立宋朝,统一中国,中国封建社会进入了另一个新的阶段,土地所有制以国有为主变为私有为主,租佃农民取代了魏唐的具有农奴身份的部曲、徒附。农业、手工业、商业和科学技术得到更大发展。中国古代四大发明,有三项——印刷术之广泛应用及活字印刷,火药用于战争,指南针用于航海——完成于唐中叶至北宋。宋秘书省于元丰七年(公元1084年)首次刊刻了《九章算术》等十部算经(时《夏侯阳算经》、《缀术》已失传,因8世纪下半叶一部韩延《算术》开头有“夏侯阳曰”云云而误认为是前者而刻入,后者只好付之阙如),是世界上首次出现的印刷本数学著作。后来南宋数学家鲍澣之翻刻了这些刻本,有《九章算术》(半部)、《周髀算经》、《孙子算经》、《五曹算经》、《张丘建算经》五种及《数术记遗》等孤本流传到现在,是目前世界上传世最早的印刷本数学著作。宋元数学家贾宪、李冶、杨辉、朱世杰的著作,大都在成书后不久即刊刻。数学著作借助印刷术得以空前广泛的流传,对传播普及数学知识,其意义尤为深远。

宋元数学高潮早在唐中叶已见端倪。随着商业贸易的蓬勃发展,人们改进筹算乘除法,新、旧《唐书》记载了大量这类书籍,可惜绝大多数失传,只有韩延(生平不详)《算术》(8世纪)以《夏侯阳算经》的名义流传下来,该书提出了若干化乘除为加减的捷算法,并在运算中使用了十进小数,极可宝贵。

11世纪上半叶贾宪(生平不详)撰《黄帝九章算经细草》,是为北宋最重要的数学著作。贾宪曾任左班殿直(低级武官),是当时著名天文学家、数学家楚衍的学生。还著有《算法?古集》二卷,已佚。他将《九章算术》未离开题设具体对象甚至数值的术文大都抽象成一般性术文,提高了《九章算术》的理论水平;他对某些类型的数学问题进行概括,比如提出开方作法本源即贾宪三角,作为他提出的立成释锁(即开方)法的算表,这是开方问题的纲;他提出了若干新的重要方法,其中最突出的是创造增乘开方法,并提出了开四次方的程序。贾宪的思想与方法对宋元数学影响极大,是宋元数学的主要推动者之一。《黄帝九章算经细草》因被杨辉《详解九章算法》抄录而大部分保存了下来(阙卷一、二及卷三上半部,卷五的一部分)。

大科学家沈括(公元1031—1095年)对数学有独到的贡献。在《梦溪笔谈》中首创隙积术,开高阶等差级数求和问题之先河,又提出会圆术,首次提出求弓形弧长的近似公式。

12世纪北宋刘益(生平不详)撰《议古根源》,亦失传。杨辉《田亩比类乘除捷法》引用了它的若干题目与方法。《缀术》失传之后,开方式的系数仍皆为正数,刘益突破了这个限制,首先引入负系数方程,并创造了益积开方术与减从开方术求其正根,杨辉誉之为“实冠前古”。

1127年金朝入主中原,赵宋南迁,史称南宋。1234年,蒙古贵族灭金,后来建立元朝。1279年元灭南宋,占领中国。13世纪中叶至14世纪初,是宋元数学高潮的集中体现,也是中国历史上留下重要数学著作最多的半个世纪,并形成了南宋统治下的长江中下游与金元统治下的太行山两侧两个数学中心。

南方中心以秦九韶、杨辉为代表,以高次方程数值解法、同余式解法及改进乘除捷算法的研究为主。北方中心则以李冶为代表,以列高次方程的天元术及其解法为主。元统一中国后的朱世杰,则集南北两个数学中心之大成,达到了中国筹算的最高水平。

1247年秦九韶撰成《数书九章》18卷。秦九韶,字道古,自称鲁郡(今山东省)人,约1202年生于普州安岳县(今四川省)。他生活在宋元激烈斗争的南宋末年,并卷入了南宋统治集团战和两派的斗争,支持抗战派吴潜,屡遭刘克庄等人弹劾。贾似道专权后被贬到梅州(今广东省),不久(约公元1261年)死于任所,并在死后被追随贾似道的周密丑诋不堪。他天资聪明好学,对数学、天文、土木建筑、诗词、音律、弓马等都十分精通。他多次呼吁统治者施仁政,并把数学知识看成开源节流、施仁政、利国利民的有力工具。《数书九章》分大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易九类81题,其成就之大,题设之复杂都超过以往算经,有的问题有88个条件,有的答案多达180条,军事问题之多也是空前的,反映了秦氏对抗元战争的关注。大衍总数术系统解决了一次同余式组解法;正负开方术把以增乘开方法为主导的求高次方程正根的方法发展到十分完备的程度,有的方程高达十次;线性方程组解法完全以互乘相消法取代直除法;提出了与海伦公式等价的三斜求积公式;使用了完整的十进小数表示法,等等,都是其杰出成就。

杨辉共撰五部数学著作,传世的有四部,居元以前数学家之冠。杨辉,字谦光,钱塘(今杭州市)人,生平不详,只知在今江浙一带管钱粮,为政清廉。与其他大家比较,他的著作偏重于教育与普及。1261年,杨辉在刘徽注、李淳风等注释、贾宪细草的《九章算术》基础上作解题、比类,并补充了图、乘除、纂类三卷,是为《详解九章算法》,今图、乘除、方田、粟米、衰分上半部、商功之一部分已佚。商功章的比类中的垛积术发展了沈括的隙积术;“纂类”则打破了《九章算术》的分类格局,按方法分成乘除、互换、合率、分率、衰分、叠积、盈不足、方程、勾股九类。1262年又撰《日用算法》,着重于改进乘除捷算法,只有少量题目保存下来。1274年撰《乘除通变本末》三卷。卷上的“习算纲目”是一个从启蒙到《九章》主要方法的数学教学计划。本书还总结了九归等乘除捷算法及其口诀。次年编纂《田亩比类乘除捷法》二卷,引用了刘益的方法与题目,批评了《五曹算经》四不等田求法的错误。同年,编纂《续古摘奇算法》二卷,对纵横图即幻方研究颇有贡献。后三部书又常合称为《杨辉算法》。

十二、十三世纪,北方出现了许多天元术著作,大都失传,流传至今的最早的以天元术为主要方法的著作是李冶的《测圆海镜》12卷(公元1248年)、《益古演段》三卷(公元1259年)。李冶(公元1192—1279年),字仁卿,号敬斋,真定栾城(今河北省)人,生于大兴(今北京市)。其父为官清廉正直,李冶自幼受到良好的教养,且爱好数学,青年时便成为名重中原的学者,金词赋科进士。入元,遂隐居于忻、崞〔guo郭〕(今山西省北部)一带,在极为艰苦的条件下研究数学及各种学问,常粥?〔zhan毡〕不继,而聚书环堵。1251年起,主持封龙书院(今河北省)。1257、1260年两次受到元主忽必烈召见,发表了立法度,正纲纪,进君子,退小人,减刑罚,止征战,反对种族偏见的政治主张。他被聘为翰林学士。然而他羞于作唯天子、宰相之命是听的御用文人,不久便以老病为辞回到封龙山。他一生文史著述颇多,仅存《敬斋古今黈》。《测圆海镜》在洞渊九容基础上考虑了勾股形与圆的10种基本关系,在卷二一十二中就15个勾股形与圆的关系提出了170个求圆径长的问题,答案当然都相同。这些问题大都要用天元术列出方程。卷一是全书的理论基础,包括圆城图式、识别杂记等部分。圆城图式以天、地、乾、坤等汉字表示点,是个创举。识别杂记提出692条公式,除八条外都是正确的,集历代勾股形与圆的关系研究之大成。《益古演段》64问,这是一部用天元术阐释蒋周(可能是北宋人)《益古集》的方程列法的著作。其中保存了《益古集》的若干题目和旧术(方法)。

朱世杰有两部重要著作《算学启蒙》(公元1299年)、《四元玉鉴》(公元1303年)传世。朱世杰,字汉卿,号松庭,燕山(今北京市)人,生平不详。他在13世纪末以数学名家周游全国20余年,向他学习数学的人很多。《算学启蒙》20门,259问,包括了从乘除及其捷算法到增乘开方法、天元术等当时数学各方面的内容,形成了一个较完整的体系。《四元玉鉴》24门,288问,卷首给出古法七乘方图(改进了的贾宪三角)等四种五幅图,以及天元术、二元术、三元术、四元术的解法范例。创造四元消法,解决了多元高次方程组问题,以及高阶等差级数求和问题,高次招差法问题,是本书最大的贡献。此书是中国古代水平最高的数学著作。

杨辉、朱世杰等人对筹算乘除捷算法的改进、总结,导致了珠算盘与珠算术的产生(大约在元中叶),完成了我国计算工具和计算技术的改革。元中后期,又出现了《丁巨算法》、贾亨《算法全能集》、何平子《详明算法》等改进乘除捷算法的著作。

明清数学——从衰落到艰难的复兴

元中叶之后,中国数学急剧衰落,元末的几部著作只是对乘除捷算法有所改进。明永乐年间(公元1403—1425年)修《永乐大典》,将前此的中国数学著作按起源、各种数学方法及音义、纂类等分类抄录。汉唐宋元数学著作在明代大都散佚,清中叶修《四库全书》,中国古算书多赖此重新面世。

明代八股取士,思想禁锢严重,学者们很少留心数学。顾应祥、唐顺之是明代数学大家,全然不懂天元术和增乘开方法。景泰元年(公元1450年)吴敬撰《九章算法比类大全》十卷,收集历代应用题,亦抛弃了增乘开方法和天元术。元明之后,随着筹算捷算法的完备,珠算术产生并得到普及,明朝出现了一批有关珠算的著作。其最著者为程大位的《算法统宗》(公元1592年),凡17卷,595问。此书适应商业发展的需要,以珠算为主要计算工具,并载有珠算开方法。此书在以后二、三百年问被多次翻刻、改编,流传之广是罕见的。程大位,字汝思,号渠宾,休宁(今黄山市屯溪区)人,曾在长江中下游地区经商,注意收集算经和数学问题,晚年撰成此书。

16世纪末,利玛窦等欧洲传教士来华,与徐光启等一起翻译《几何原本》等著作。后来,传教士们又引入了三角学、对数等西方初等数学,从此,中国数学开始了中西会通的阶段。清朝260余年,留下数学著作极多,都在不同程度上融会中西数学。

清宣城梅文鼎(公元1633—1721年)潜心于中西数学研究,著述甚多,其孙梅瑴成将他的著作编辑成《梅氏丛书辑要》60卷,其中数学著作13种40卷,内容遍及当时中国数学的各个门类,对清朝数学影响极大。

康熙皇帝爱好数学,他御定由梅瑴成、何国宗、明安图、陈厚耀等编纂的《数理精蕴》53卷,全面系统地介绍了当时传入的西方数学知识。上编立纲明体,为数理本源、几何原本、算术原本等五卷;下编分条致用,为实用数学和借根方比例,以及对数、三角函数等40卷,表4种8卷,同样对清朝数学产生了巨大影响。此书于雍正元年(公元1723年)印行。

1723年,雍正帝即位,认为传教士不利于自己的统治,除少数供职于钦天监者外,将传教士悉数赶到澳门。此后,西学的传入遂告一段落,中国数学家一方面消化前此传入的数学知识,一方面忙于整理中国古典数学著作。

1773年乾隆帝决定修《四库全书》,戴震(公元1724—1777年)从《永乐大典》中辑出《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《五曹算经》、《五经算术》以及赝本《夏侯阳算经》等七部汉唐算经,并加校勘,《数书九章》、《测圆海镜》、《四元玉鉴》等久佚的宋元算书也陆续辑出或发现,从此掀起了乾嘉时期(公元1736—1820年)研究整理中国古典数学的热潮。古书注释以李潢(?—公元1812年)《九章算术细草图说》、罗士琳(公元1789—1853年)《四元玉鉴细草》影响较大。而开创性的研究则以焦循(公元1763—1820年)《里堂学算记》、汪莱(公元1768—1813年)《衡斋算学》、李锐(公元1768—1817年)《李氏算学遗书》最为有名。

18世纪初,法人杜德美(公元1668—1720年)传入牛顿、格雷果里创造的三个三角函数的级数展开式。后来,三角函数和对数函数展开式的研究成为中国数学家的重要课题。明安图(17世纪末至18世纪60年代)、董祐诚(公元1791—1823年)、项名达(公元1789—1850年)、戴煦(公元1805—1860年)等都作出了杰出贡献。李善兰(公元1811—1882年)的《方圆阐幽》、《弧矢启秘》、《对数探源》(公元1845年)在三角函数与对数函数的研究上取得了更大的成就。他创造的尖锥术提出了几个相当于定积分的公式,在接触西方微积分思想之前独立地接近了微积分学。李善兰,字壬叔,号秋纫,浙江海宁人。幼年即嗜好数学,30余岁即获创造性成果。

1840年,列强用大炮轰开了清朝闭关自守的大门,中国逐渐沦为半封建半殖民地社会。西方数学以前所未有的规模大量传入。1852年李善兰到上海,与英国传教士伟烈亚力(公元1815—1887年)合译《几何原本》后九卷、《代数学》13卷、《代微积拾级》18卷等许多西方数学著作,后者是中国第一部微积分学译著。后来,华衡芳(公元1833—1902年)与英人傅兰雅合译了《代数术》、《微积溯源》、《三角数理》、《决疑数学》等书,后者是中国第一部概率论译著。他们创造的许多术语至今还在使用。李善兰还融会中西,著述颇丰。《椭圆正术解》等四种是关于圆锥曲线的研究,《级数回求》等是关于幂级数的研究,而《垛积比类》则在朱世杰基础上系统解决了高阶等差级数求和问题,并提出了著名的李善兰恒等式。1872年撰《考数根法》,证明了费尔马小定理,提出了素数判定法则。他的著作汇集为《则古昔斋算学》,包括14种科学著作。李善兰是开展现代数学研究的第一位中国数学家。然而,总的说来,时处清末,经济衰落,社会动荡,有志于现代数学的人没有与现代工程技术结合的条件,不可能有大量可观的成果,而士大夫阶层更多的人抱有西学为我中华所固有的偏见,不求甚解。此后不久,尤其是维新变法和新文化运动之后,中国古代数学传统基本中断,中国数学研究纳入了统一的现代数学。20世纪是中国数学复兴的世纪,人们期待,在下个世纪中国将重新取得数学大国的地位。

小学数学史常识

数学国古代科学门重要学科根据国古代数学发展特点分五时期:萌芽;体系形成;发展;繁荣和西方数学融合 国古代数学萌芽 原始公社末期私有制和货物交换产生数与形概念有了进步发展仰韶文化时期出土陶器上面已刻有表示1234符号原始公社末期已开始用文字符号取代结绳记事了 西安半坡出土陶器有用1~8圆点组成等边三角形和分正方形100小正方形图案半坡遗址房屋基址都圆形和方形了画圆作方确定平直人们还创造了规、矩、准、绳等作图与测量工具据《史记·夏本纪》记载夏禹治水时已使用了些工具 商代期甲骨文已产生套十进制数字和记数法其大数字三万;与此同时殷人用十天干和十二地支组成甲子、乙丑、丙寅、丁卯等60名称来记60天日期;周代又把前用阴、阳符号构成八卦表示八种事物发展六十四卦表示64种事物 公元前世纪《周髀算经》提西周初期用矩测量高、深、广、远方法并举出勾股形勾三、股四、弦五及环矩圆等例子《礼记·内则》篇提西周贵族子弟从九岁开始便要学习数目和记数方法们要受礼、乐、射、驭、书、数训练作六艺之数已经开始成专门课程 春秋战国之际筹算已得普遍应用筹算记数法已使用十进位值制种记数法对世界数学发展有划时代意义时期测量数学生产上有了广泛应用数学上亦有相应提高 战国时期百家争鸣也促进了数学发展尤其对于正名和些命题争论直接与数学有关名家认经过抽象名词概念与们原来实体同们提出矩方规圆把大(无穷大)定义至大无外小(无穷小)定义至小无内还提出了尺之棰日取其半万世竭等命题 而墨家则认名来源于物名从同方面和同深度反映物墨家给出些数学定义例圆、方、平、直、次(相切)、端(点)等等 墨家同意尺之棰命题提出非半命题来进行反驳:线段按半半地无限分割下去必出现能再分割非半非半点 名家命题论述了有限长度分割成无穷序列墨家命题则指出了种无限分割变化和结名家和墨家数学定义和数学命题讨论对国古代数学理论发展有意义 国古代数学体系形成 秦汉封建社会上升时期经济和文化均得迅速发展国古代数学体系正形成于时期主要标志算术已成专门学科及《九章算术》代表数学著作出现 《九章算术》战国、秦、汉封建社会创立并巩固时期数学发展总结其数学成来说堪称世界数学名著例分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算加减法则、勾股形解法(特别勾股定理和求勾股数方法)等水平都高其方程组解法和正负数加减法则世界数学发展上遥遥领先其特点来说形成了筹算心、与古希腊数学完全同独立体系 《九章算术》有几显著特点:采用按类分章数学问题集形式;算式都从筹算记数法发展起来;算术、代数主少涉及图形性质;重视应用缺乏理论阐述等 些特点同当时社会条件与学术思想密切相关秦汉时期切科学技术都要当时确立和巩固封建制度及发展社会生产服务强调数学应用性成书于东汉初年《九章算术》排除了战国时期百家争鸣出现名家和墨家重视名词定义与逻辑讨论偏重于与当时生产、生活密切相结合数学问题及其解法与当时社会发展情况完全致 《九章算术》隋唐时期曾传朝鲜、日本并成些国家当时数学教科书些成十进位值制、今有术、盈足术等还传印度和阿拉伯并通过印度、阿拉伯传欧洲促进了世界数学发展 国古代数学发展 魏、晋时期出现玄学汉儒经学束缚思想比较活跃;诘辩求胜又能运用逻辑思维分析义理些都有利于数学从理论上加提高吴国赵爽注《周髀算经》汉末魏初徐岳撰《九章算术》注魏末晋初刘徽撰《九章算术》注、《九章重差图》都出现时期赵爽与刘徽工作国古代数学体系奠定了理论基础 赵爽国古代对数学定理和公式进行证明与推导早数学家之《周髀算经》书补充勾股圆方图及注和日高图及注十分重要数学文献勾股圆方图及注提出用弦图证明勾股定理和解勾股形五公式;日高图及注用图形面积证明汉代普遍应用重差公式赵爽工作带有开创性国古代数学发展占有重要地位 刘徽约与赵爽同时继承和发展了战国时期名家和墨家思想主张对些数学名词特别重要数学概念给严格定义认对数学知识必须进行析理才能使数学著作简明严密利于读者《九章算术》注仅对《九章算术》方法、公式和定理进行般解释和推导而且论述过程有大发展刘徽创造割圆术利用极限思想证明圆面积公式并首次用理论方法算得圆周率157/50和3927/1250 刘徽用无穷分割方法证明了直角方锥与直角四面体体积比恒2:1解决了般立体体积关键问题证明方锥、圆柱、圆锥、圆台体积时刘徽彻底解决球体积提出了正确途径 东晋国长期处于战争和南北分裂状态祖冲之父子工作经济文化南移南方数学发展具有代表性工作们刘徽注《九章算术》基础上把传统数学大大向前推进了步们数学工作主要有:计算出圆周率3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程解法等 据推测祖冲之刘徽割圆术基础上算出圆内接正6144边形和正12288边形面积从而得了结又用新方法得圆周率两分数值即约率22/7和密率355/113祖冲之工作使国圆周率计算方面比西方领先约千年之久; 祖冲之之子祖(日恒)总结了刘徽有关工作提出幂势既同则积容异即等高两立体若其任意高处水平截面积相等则两立体体积相等著名祖(日恒)公理祖(日恒)应用公理解决了刘徽尚未解决球体积公式 隋炀帝好大喜功大兴土木客观上促进了数学发展唐初王孝通《缉古算经》主要讨论土木工程计算土方、工程分工、验收及仓库和地窖计算问题反映了时期数学情况王孝通用数学符号情况下立出数字三次方程仅解决了当时社会需要也来天元术建立打下基础此外对传统勾股形解法王孝通也用数字三次方程解决 唐初封建统治者继承隋制656年国子监设立算学馆设有算学博士和助教学生30人由太史令李淳风等编纂注释《算经十书》作算学馆学生用课本明算科考试亦些算书准李淳风等编纂《算经十书》对保存数学经典著作、数学研究提供文献资料方面有意义们给《周髀算经》、《九章算术》及《海岛算经》所作注解对读者有帮助隋唐时期由于历法需要天算学家创立了二次函数内插法丰富了国古代数学内容 算筹国古代主要计算工具具有简单、形象、具体等优点也存布筹占用面积大运筹速度加快时容易摆弄正而造成错误等缺点因此早开始进行改革其太乙算、两仪算、三才算和珠算都用珠槽算盘技术上重要改革尤其珠算继承了筹算五升十进与位值制优点又克服了筹算纵横记数与置筹便缺点优越性十分明显由于当时乘除算法仍能横列进行算珠还没有穿档携带方便因此仍没有普遍应用 唐期商业繁荣数字计算增多迫切要求改革计算方法从《新唐书》等文献留下来算书书目看出次算法改革主要简化乘、除算法唐代算法改革使乘除法横列进行运算既适用于筹算也适用于珠算 国古代数学繁荣 960年北宋王朝建立结束了五代十国割据局面北宋农业、手工业、商业空前繁荣科学技术突飞猛进火药、指南针、印刷术三大发明种经济高涨情况下得广泛应用1084年秘书省第次印刷出版了《算经十书》1213年鲍擀之又进行翻刻些都数学发展创造了良好条件 从11~14世纪约300年期间出现了批著名数学家和数学著作贾宪《黄帝九章算法细草》刘益《议古根源》秦九韶《数书九章》李冶《测圆海镜》和《益古演段》杨辉《详解九章算法》《日用算法》和《杨辉算法》朱世杰《算学启蒙》《四元玉鉴》等多领域都达古代数学高峰其些成也当时世界数学高峰 从开平方、开立方四次上开方认识上飞跃实现飞跃贾宪杨辉《九章算法纂类》载有贾宪增乘开平方法、增乘开立方法;《详解九章算法》载有贾宪开方作法本源图、增乘方法求廉草和用增乘开方法开四次方例子根据些记录确定贾宪已发现二项系数表创造了增乘开方法两项成对整宋元数学发生重大影响其贾宪三角比西方帕斯卡三角形早提出600多年 把增乘开方法推广数字高次方程(包括系数负情形)解法刘益《杨辉算法》田亩比类乘除捷法卷介绍了原书22二次方程和1四次方程者用增乘开方法解三次上高次方程早例子 秦九韶高次方程解法集大成者《数书九章》收集了21用增乘开方法解高次方程(高次数10)问题了适应增乘开方法计算程序奏九韶把常数项规定负数把高次方程解法分成各种类型当方程根非整数时秦九韶采取继续求根小数或用减根变换方程各次幂系数之和分母常数分子来表示根非整数部分《九章算术》和刘徽注处理无理数方法发展求根第二位数时秦九韶还提出次项系数除常数项根第二位数试除法比西方早霍纳方法早500多年 元代天文学家王恂、郭守敬等《授时历》解决了三次函数内插值问题秦九韶缀术推星题、朱世杰《四元玉鉴》象招数题都提内插法(们称招差术)朱世杰得四次函数内插公式 用天元(相当于x)作未知数符号立出高次方程古代称天元术国数学史上首次引入符号并用符号运算来解决建立高次方程问题现存早天元术著作李冶《测圆海镜》 从天元术推广二元、三元和四元高次联立方程组宋元数学家又项杰出创造留传至今并对杰出创造进行系统论述朱世杰《四元玉鉴》 朱世杰四元高次联立方程组表示法天元术基础上发展起来把常数放央四元各次幂放上、下、左、右四方向上其各项放四象限朱世杰大贡献提出四元消元法其方法先择元未知数其元组成多项式作未知数系数列成若干元高次方程式应用互乘相消法逐步消去未知数重复步骤便消去其未知数用增乘开方法求解线性方法组解法重大发展比西方同类方法早400多年 勾股形解法宋元时期有新发展朱世杰《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形方法补充了《九章算术》足李冶《测圆海镜》对勾股容圆问题进行了详细研究得九容圆公式大大丰富了国古代几何学内容 已知黄道与赤道夹角和太阳从冬至点向春分点运行黄经余弧求赤经余弧和赤纬度数解球面直角三角形问题传统历法都用内插法进行计算元代王恂、郭守敬等则用传统勾股形解法、沈括用会圆术和天元术解决了问题过们得近似公式结够精确们整推算步骤正确无误从数学意义上讲方法开辟了通往球面三角法途径 国古代计算技术改革高潮也出现宋元时期宋元明历史文献载有大量时期实用算术书目其数量远比唐代多改革主要内容仍乘除法与算法改革同时穿珠算盘北宋能已出现把现代珠算看成既有穿珠算盘又有套完善算法和口诀应该说完成于元代 宋元数学繁荣社会经济发展和科学技术发展必结传统数学发展必结此外数学家们科学思想与数学思想也十分重要宋元数学家都同程度上反对理学家象数神秘主义秦九韶虽曾主张数学与道学同出源来认识通神明数学存只有经世务类万物数学;莫若《四元玉鉴》序文提出用假象真虚问实则代表了高度抽象思维思想方法;杨辉对纵横图结构进行研究揭示出洛书本质有力地批判了象数神秘主义所有些无疑促进数学发展重要因素 西方数学融合 国从明代开始进入了封建社会晚期封建统治者实行极权统治宣传唯心主义哲学施行八股考试制度种情况下除珠算外数学发展逐渐衰落 16世纪末西方初等数学陆续传入国使国数学研究出现西融合贯通局面;鸦片战争近代数学开始传入国国数学便转入学习西方数学主时期;19世纪末20世纪初近代数学研究才真正开始 从明初明叶商品经济有所发展和种商业发展相适应珠算普及明初《魁本对相四言杂字》和《鲁班木经》出现说明珠算已十分流行前者儿童看图识字课本者把算盘作家庭必需用品列入般木器家具手册 随着珠算普及珠算算法和口诀也逐渐趋于完善例王文素和程大位增加并改善撞归、起口诀;徐心鲁和程大位增添加、减口诀并除法广泛应用归除从而实现了珠算四则运算全部口诀化;朱载墒和程大位把筹算开平方和开立方方法应用珠算程大位用珠算解数字二次、三次方程等等程大位著作国内外流传广影响大 1582年意大利传教士利玛窦国1607年先与徐光启翻译了《几何原本》前六卷、《测量法义》卷与李之藻编译《圜容较义》和《同文算指》1629年徐光启被礼部任命督修历法主持下编译《崇祯历书》137卷《崇祯历书》主要介绍欧洲天文学家第谷地心学说作学说数学基础希腊几何学欧洲玉山若干三角学及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来 传入数学影响大《几何原本》《几何原本》国第部数学翻译著作绝大部分数学名词都首创其许多至今仍沿用徐光启认对必疑、必改举世无人当学《几何原本》明清两代数学家必读数学书对们研究工作颇有影响 其次应用广三角学介绍西方三角学著作有《大测》《割圆八线表》和《测量全义》《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)性质造表方法和用表方法《测量全义》除增加些《大测》所缺平面三角外比较重要积化和差公式和球面三角所有些当时历法工作都随译随用 1646年波兰传教士穆尼阁来华跟随学习西方科学有薛凤柞、方通等穆尼阁去世薛凤柞据其所学编成《历学会通》想把法西法融会贯通起来《历学会通》数学内容主要有比例对数表》《比例四线新表》和《三角算法》前两书介绍英国数学家纳皮尔和布里格斯发明增修对数书除《崇祯历书》介绍球面三角外尚有半角公式、半弧公式、德氏比例式、纳氏比例式等方通所著《数度衍》对对数理论进行解释对数传入十分重要历法计算立即得应用 清初学者研究西数学有心得而著书传世多影响较大有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其数学著作13种共40卷)、年希尧《视学》等梅文鼎集西数学之大成者对传统数学线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究使濒于枯萎明代数学出现了生机年希尧《视学》国第部介绍西方透视学著作 清康熙皇帝十分重视西方科学除了亲自学习天文数学外还培养了些人才和翻译了些著作1712年康熙皇帝命梅彀成任蒙养斋汇编官会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书1721年完成《律历渊源》100卷康熙御定名义于1723年出版其《数理精蕴》主要由梅彀成负责分上下两编上编包括《几何原本》、《算法原本》均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学附有素数表、对数表和三角函数表由于部比较全面初等数学百科全书并有康熙御定名义因此对当时数学研究有定影响 综上述看清代数学家对西方数学做了大量会通工作并取得许多独创性成些成和传统数学比较有进步和同时代西方比较则明显落了 雍正即位对外闭关自守导致西方科学停止输入国对内实行高压政策致使般学者既能接触西方数学又敢过问经世致用之学因而埋头于究治古籍乾嘉年间逐渐形成考据学主乾嘉学派 随着《算经十书》与宋元数学著作收集与注释出现了研究传统数学高潮其能突破旧有框框并有发明创造有焦循、汪莱、李锐、李善兰等们工作和宋元时代代数学比较青出于蓝而胜于蓝;和西方代数学比较时间上晚了些些成没有受西方近代数学影响下独立得 与传统数学研究出现高潮同时阮元与李锐等编写了部天文数学家传记-《畴人传》收集了从黄帝时期嘉庆四年已故天文学家和数学家270余人(其有数学著作传世足50人)和明末来介绍西方天文数学传教士41人部著作全由掇拾史书荃萃群籍甄而录之而成收集完全第手原始资料学术界颇有影响 1840年鸦片战争西方近代数学开始传入国首先英人上海设立墨海书馆介绍西方数学第二次鸦片战争曾国藩、李鸿章等官僚集团开展洋务运动也主张介绍和学习西方数学组织翻译了批近代数学著作 其较重要有李善兰与伟烈亚力翻译《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译《代形合参》《八线备旨》等等 《代微积拾级》国第部微积分学译本;《代数学》英国数学家德·摩根所著符号代数学译本;《决疑数学》第部概率论译本些译著创造了许多数学名词和术语至今还应用所用数学符号般已被淘汰了戊戌变法各地兴办新法学校上述些著作便成主要教科书 翻译西方数学著作同时国学者也进行些研究写出些著作较重要有李善兰《《尖锥变法解》《考数根法》;夏弯翔《洞方术图解》《致曲术》《致曲图解》等等都会通西学术思想研究成 由于输入近代数学需要消化吸收过程加上清末统治者十分腐败太平天国运动冲击下帝国主义列强掠夺下焦头烂额无暇顾及数学研究直1919年五四运动国近代数学研究才真正开始 近现代数学发展时期 时期从20世纪初至今段时间常1949年新国成立标志划分两阶段 国近3年留日冯祖荀1908年留美郑之蕃1910年留美胡明复和赵元任1911年留美姜立夫1912年留法何鲁1913年留日陈建功和留比利时熊庆来(1915年转留法)1919年留日苏步青等人们多数回国成著名数学家和数学教育家国近现代数学发展做出重要贡献其胡明复1917年取得美国哈佛大学博士学位成第位获得博士学位国数学家随着留学人员回国各地大学数学教育有了起色初只有北京大学1912年成立时建立数学系1920年姜立夫天津南开大学创建数学系1921年和1926年熊庆来分别东南大学(今南京大学)和清华大学建立数学系久武汉大学、齐鲁大学、浙江大学、山大学陆续设立了数学系1932年各地已有32所大学设立了数学系或数理系1930年熊庆来清华大学首创数学研究部开始招收研究生陈省身、吴大任成国内早数学研究生三十年代出国学习数学还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人们都成国现代数学发展骨干力量同时外国数学家也有来华讲学例英国罗素(1920)美国伯克霍夫(1934)、奥斯古德(1934)、维纳(1935)法国阿达马(1936)等人1935年国数学会成立大会上海召开共有33名代表出席1936年《国数学会学报》和《数学杂志》相继问世些标志着国现代数学研究进步发展 解放前数学研究集纯数学领域国内外共发表论着600余种分析学方面陈建功三角级数论熊庆来亚纯函数与整函数论研究代表作另外还有泛函分析、变分法、微分方程与积分方程成;数论与代数方面华罗庚等人解析数论、几何数论和代数数论及近世代数研究取得令世人瞩目成;几何与拓扑学方面苏步青微分几何学江泽涵代数拓扑学陈省身纤维丛理论和示性类理论等研究做了开创性工作:概率论与数理统计方面许宝騄元和多元分析方面得许多基本定理及严密证明此外李俨和钱宝琮开创了国数学史研究们古算史料注释整理和考证分析方面做了许多奠基性工作使我国民族文化遗产重放光彩 1949年11月即成立国科学院1951年3月《国数学学报》复刊(1952年改《数学学报》)1951年10月《国数学杂志》复刊(1953年改《数学通报》)1951年8月国数学会召开建国第次全国代表大会讨论了数学发展方向和各类学校数学教学改革问题 建国数学研究取现代数学开始于清末民初留学活动较早出国学习数学有:190得长足进步50年代初期出版了华罗庚《堆栈素数论》(1953)、苏步青《射影曲线概论》(1954)、陈建功《直角函数级数和》(1954)和李俨《算史论丛》(5辑1954-1955)等专着1966年共发表各种数学论文约2万余篇除了数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成外还微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破有许多论著达世界先进水平同时培养和成长起大批优秀数学家 60年代期国数学研究基本停止教育瘫痪、人员丧失、对外交流断经多方努力状况略有改变1970年《数学学报》恢复出版并创刊《数学实践与认识》1973年陈景润《国科学》上发表《大偶数表示素数及超过二素数乘积之和》论文哥德巴赫猜想研究取得突出成此外国数学家函数论、马尔夫过程、概率应用、运筹学、优选法等方面也有定创见 1978年11月国数学会召开第三次代表大会标志着国数学复苏1978年恢复全国数学竞赛1985年国开始参加国际数学奥林匹克数学竞赛1981年陈景润等数学家获国家自科学奖励1983年国家首批授于18名青年学者博士学位其数学工作者占2/31986年国第次派代表参加国际数学家大会加入国际数学联合会吴文俊应邀作了关于国古代数学史45分钟演讲近十几年来数学研究硕累累发表论文专著数量成倍增长质量断上升1985年庆祝国数学会成立50周年年会上已确定国数学发展长远目标代表们立志要懈地努力争取使国世界上早日成新数学大国.

1.数学小知识

1、在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。

那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。 现在, *** 数字已成了全世界通用的数字符号。

2、九九歌就是我们现在使用的乘法口诀。 远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。

在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二得四”止,共36句。

因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一得一”。

大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一得一”起到“九九八十一”止。 现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

3、圆形,是一个看来简单,实际上是很奇妙的圆形。 古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。

就是现在也还用日、月来形容一些圆的东西,如月门、月琴、日月贝、太阳珊瑚等等。 是什么人作出第一个圆呢? 十几万年前的古人作的石球已经相当圆了。

前面说过,一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。 山顶洞人是用一种尖状器转着钻孔的,一面钻不透,再从另一面钻。

石器的尖是圆心,它的宽度的一半就是半径,一圈圈地转就可以钻出一个圆的孔。 以后到了陶器时代,许多陶器都是圆的。

圆的陶器是将泥土放在一个转盘上制成的。 当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。

6000年前的半坡人(在西安)会建造圆形的房子,面积有十多平方米。 古代人还发现圆的木头滚着走比较省劲。

后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。当然了,因为圆木不是固定在重物下面的,走一段,还得把后面滚出来的圆木滚到前面去,垫在重物前面部分的下方。

大约在6000年前,美索不达米亚人,做出了世界上第一个轮子–圆的木盘。 大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

因为轮子的圆心是固定在一根轴上的,而圆心到圆周总是等长的,所以只要道路平坦,车子就可以平衡地前进了。 会作圆,但不一定就懂得圆的性质。

古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:”一中同长也”。

意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

圆周率,也就是圆周与直径的比值,是一个非常奇特的数。 《周髀算经》上说”径一周三”,把圆周率看成3,这只是一个近似值。

美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。 魏晋时期的刘徽于公元263年给《九章算术》作注。

他发现”径一周三”只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。

他算到圆内接正3072边形的圆周率,π= 3927/1250,请你将它换算成小数,看约等于多少? 刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。 祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。

请你将这两个分数换成小数,看它们与今天已知的圆周率有几位小数数字相同? 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。 现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。

4、数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。 数学符号的发明和使用比数字晚,但是数量多得多。

现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

例如加号曾经有好几种,现在通用”+”号。 “+”号是由拉丁文”et”(”和”的意思)演变而来的。

十六世纪,意大利科学家塔塔里亚用意大利文”più”(加的意思)的第一个字母表示加,草为”μ”最后都变成了”+”号。 “-“号是从拉丁文”minus”(”减”的意思)演变来的,简写m,再省略掉字母,就成了”-“了。

也有人说,卖酒的商人用”-“表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在”-“上加一竖,意思是把原线条勾销,这样就成了个”+”号。

到了十五世纪,德国数学家魏德美正式确定:”+”用作加号,”-“用作减号。 乘号曾经用过十几种,现在通用两种。

一个是”*”,最早是英国数学家奥屈特1631年提出的;一个是”· “,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:”*”。

2.数学知识都有哪些

1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等24 推论 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的 *** 30 等腰三角形的性质定理 等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的 *** 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a*b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位。

3.数学小知识,要六年级的

1、杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。

2、一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。

由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。

每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。

大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。

……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。

课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。

兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。

3、为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。

他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。

康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。

来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。

1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。

1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。

23岁获博士学位,以后一直从事数学教学与研究。他所创立的 *** 论已被公认为全部数学的基础。

4、数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”

吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。

他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。

后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答: “我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。

但是,有些数字非记不可,也很容易记住……” 5、苹果树下的例行出步 1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25。

4.数学的小知识

阿基米德(Archimedes)1、《砂粒计算》,是专讲计算方法和计算理论的一本著作。

阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。2、《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:3.1408 3、《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。

阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的”阿基米德公理”。

4、《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:”任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。”他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

5、《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。

在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。 6、《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。

7、《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。8、《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。

毕达哥拉斯1、勾股定理:任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角(32+42=52). 毕达哥拉斯定理: 给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和. 反过来也是对的: 如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形. 虽然这个定理以后来的希腊数学家毕达哥拉斯(大约公元前540年)的名字命名,但有证据表明,该定理的历史可以追溯到华达哥拉斯之前1000年的古巴比伦的汉漠拉比年代.把该定理名字归于毕达哥拉斯,大概是因为他第一个对自己在学校中所写的证明作了记录.毕达哥拉斯定理的结论和它的证明,遍及于世界的各个大洲、各种文化及各个时期.事实上,这一定理的证明之多,是其他任何发现所无法比拟的!2、无理数毕达哥拉斯学派认为,任意数都可以用整数或整数的比来表示。但有一个学生叫希伯斯发现:若一个等腰直角三角形的边为1,那么根据毕达哥拉斯定理(即勾股定理,只是西方这么叫,事实上还是咱们的祖先最先发现的!^.^),斜边长的平方应为1+1=2,平方等于2的数就无法用整数或分数来表示。

他把这个发现告诉了别人,但这一发现就推倒了“毕”学派的根本思想。于是他就被人扔河里处死了。

后来人们肯定了这一发现,为区别“毕”派有理数,所以取名为无理数。无理数的口诀记忆 √2≈1.41421:意思意思而已 √3≈1.7320:一起生鹅蛋 √5≈2.2360679:两鹅生六蛋(送)六妻舅 √7≈2.6457513:二妞是我,气我一生 e≈2.718:粮店吃一把 π≈3.14159:山巅一寺一壶酒。

5.我需要3个数学知识、故事(越短越好)

说四个,很短的:高斯上小学的时候老师要同学们计算1+2+3+……+98+99+100。

老师本人都是老老实实挨着计算,高斯很快算完并告知其方法是首尾数字相加再乘以50,另老师惊叹。 公元六世纪,毕达哥拉斯学派学者希伯斯在研究长为1的正方形的对角线长度的时候发现了无理数,不被毕达哥拉斯学派承认,将其扔进海里淹死,造成数学史上第一次危机,即不承认无理数并阻止其传播。

著名数学家阿贝尔有一次给他的恩师霍姆伯写信时,信尾署的日期是 三次根号6064321219,涉及开方,开出来是1823.5908275。(年),而 365*0.5908275=215.652(日)≈216日,那年是平年,所以应该是1823年八月四日。

华罗庚有次出国访问,在飞机上,旁边一个乘客看一本数学杂志,上面一道题是:三次根号59319是多少,华罗庚看完脱口而出是39,另大家惊叹。(他解释的算法略去)。

6.数学小知识有啥

看看[杨辉三角]吧!

杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

… … … … …

杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。

奇*奇=奇

奇+偶=奇

奇+奇=偶

奇*偶=偶

偶+偶=偶

偶*偶=偶

无声胜有声

在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721*761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?

因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。

科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。

7.关于数学的小知识

中国古代数学史曾经有自己光辉灿烂的篇章..。

在国外,这也叫做”帕斯卡三角形”。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。

现在要求我们用编程的方法输出这样的数表。 同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . 。

,b都为1的时候) [ 上述y^x 指 y的 x次方,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。

在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图. ,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。

具体的用法我们会在教学内容中讲授..,而其余的数则是等于它肩上的两个数之和。其实..,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位..,辑录了如上所示的三角形数表。

在他1261年所著的《详解九章算法》一书中杨辉三角是一个由数字排列成的三角形数表,一般形式如下,字谦光,它的两条斜边都是由数字1组成的。 杨辉,而杨辉三角的发现就是十分精彩的一页. . 。

中国古代数学史曾经有自己光辉灿烂的篇章;(a nCr b) 指 组合数] 其实. 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,北宋时期杭州人。

关于“中国古代数学的历史”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

特别申明:网站所收集到的公开内容均来自于互联网或用户投稿,并不代表本站认同其观点,也不对网站内容的真实性负责,如有侵权,请联系站长删除,转载请注明出处:https://www.lnwcn.com/179530.html。
(0)
启航之家的头像启航之家官方
上一篇 10小时前
下一篇 10小时前

猜你喜欢

微信:6284847
备注:全天在线。

微信号:6284847,长按微信号复制添加微信好友, 获取更多信息