网上有关“为什么当年双缝干涉延迟实验让科学家感到恐怖?”话题很是火热,小编也是针对为什么当年双缝干涉延迟实验让科学家感到恐怖?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
双缝干涉实验,其实就是科学家们用来证明光有波动性的一个实验。微观粒子的形态取决于人的观察,被观察的时候呈现出粒子的状态,不被观察时呈现波的状态,微观粒子就像有“生命”一样可以感觉到人类的存在,因此双缝干涉延迟实验才让很多人感到恐惧。延迟实验很可怕的,不单单是因为观察者效应,更重要的是他所反应出来的是在微观世界里,果能改变因,就像未来能改变过去一样可怕。
本来的观察结果认为光具有波粒二象性,单独发射一个光粒子却可以神奇的自己对自己产生双缝干涉。就是说一颗光粒子却诡异同时通过了两条缝,可是更诡异的是如果这个实验过程被摄像机记录的话那么双缝干涉就不会产生,单独发射的光粒子每次都老老实实的通过对准的那一条缝。若是没有摄像机记录我就同时通过两条缝你说气人不?后来狡猾的人类又想了一个办法。开始先不打开摄像机等光粒子同时穿过两条缝,这时候双缝干涉已经形成再打开摄像机,这次你跑不掉了吧。吓着科学家的事情这时候真正发生了,本来已经产生的双缝干涉突然消失了,光粒子又神奇的变成了只通过一条缝。这简直逆天了,等于说已经发生的事实被摄像机一记录结局突然被改写。时空顺序在这一刻已经错乱,刚刚发生在眼前的 历史 事件结果居然被观察改变掉了,这真的让人无法接受。
20世纪初,物理学界对于光的波动学说和粒子学说已经争论了几百年了,爱因斯坦联合普朗克一起提出了光量子学说,人们开始意识到光同时具有波动性和粒子性的双重性质,也就是说光在传播过程中呈现波的形态,与物质相互作用时呈现粒子形态,这种被称为“波粒二象性”的解释得到了物理学界的一致认同。
后来科学家们利用杨氏双缝实验,在点光源后面放一张拥有两条狭缝的纸,这时候点光源的光穿过狭缝就会变成一串明暗交替的条纹,这便是证明光量子学说的干涉条纹。
在证明光拥有波粒二象性之后科学家利用电子也进行了双缝实验,发现电子等微观粒子同样具有波粒二象性,随着技术的进步,科学家们开始用仪器发射单个电子来进行双缝干涉实验,这时候发生了第一件怪事:单电子双缝实验的结果竟然和之前的电子双缝干涉实验结果完全相同。
之前的电子双缝干涉可以产生明暗交替的条纹,单个电子竟然也能产生干涉条纹,但仪器明明就只发出了一个电子,它能和谁干涉呢?这个结果就像是一个足球同时进了两个球门一样匪夷所思,科学家们下定决心要揭开单个电子干涉条纹的秘密,于是就有了更加匪夷所思甚至恐怖的“双缝干涉延迟实验”。延迟实验的精髓就在于记录电子在穿过双缝后的样子,由于只有单个电子,所以它穿越任何一条缝隙都能被直接看到,因此屏幕上的波态干涉条纹消失了,取而代之的是粒子态的痕迹,而一旦把记录电子轨迹的机器关闭,那么明暗条纹就会马上出现,一旦开启机器明暗条纹就会马上消失。
后来,有科学家突发奇想,我如果把光子一个个发射出去,而不是一次性全撒出去,因为这样光子间就不会再互相影响,从而就不会产生图一的干涉图样呢?但是,试验很快打了他的脸,即便一个一个的发射,干涉图样还是出现了,就好像一个光子可以同时穿过两条缝隙,进而自己对自己产生干涉一样。
当他试图用摄像机去观察粒子的运动轨迹时,这些粒子一个个的就像有智慧一样,仿佛知道有人在看它们的表演,于是它们立刻停止表演,墙上的干涉条纹消失了。梅里有点不敢相信,这不是扯吗?我竟然被小小的粒子耍了。他一开始是拒绝相信的,但是经过无数次的验证,他最终服了。梅里向学界公开了这一让人“毛骨悚然”的新发现:粒子的行为竟然是由人的意识所决定的。
这个实验就是说光具有波粒二象性,当你不观测时,它是波,会产生干涉条纹,当你观测它时,它又变成了粒子,没有干涉条纹!光到底呈现什么特性,取决于你是不是在观测它!实验非常诡异,就仿佛一个个的光子都有意识!知道有人在研究它,不让你深入研究!
我是这样认为的:由于光的速度极快可以穿越时空,因此它在可以同时存在于平行时空中,同时穿越两条缝形成干涉。而一旦进行观察,只能剩余一种穿越方式,其余平行时空消失。因此,意识能够决定平行时空的开启或关闭。空即是色,色即是彩!好比说我现在决定从床上起来,那么我躺在床上的其余平行时空都将被关闭。综上所述,光的干涉,是光的速度能够为我们展示所有平行空间,若加以观测就是我们选定了其中的一个平行空间。一点拙见,欢迎批评!
我是@鲸彩666,一个相信 科技 是第一生产力并追逐当下热门 科技 的人。我将努力第一时间跟大家分享和剖析精彩 科技 !欢迎大家留言讨论哦。
如果说宇宙不是完美的,它有BUG(漏洞),你信么?双缝干涉实验似乎一步步地发现了这个宇宙“漏洞”
双缝干涉实验是什么?
当我们在水中丢下一块石头,那么水面就会产生波纹,如果同时丢下两块石头,两个水波之间就能够出现交叉的干涉条纹。这就是波能够互相干涉的特征。
双缝干涉实验既在一个光源前放置一个开了两条缝隙的不透明挡板,挡板后面再放置一个能够观测到的背景。当我们打开光源,会看到背景上出现明暗相间的条纹,这就是简单的双缝干涉实验。 这个实验证明了光是一种波! 因为光在穿过两条缝隙后产生只有波特有的干涉,相反的波被抵消,相向的波被增强,导致背景上明暗相间的条纹。(日常生活中主动降噪耳机就是利用了这个原理,用相反的声波抵消了噪音)
下面我们把实验升级一下,光源变得非常小,背景换成高灵敏高分辨的底片。打开光源后,一开始我们看到了无数随机分布的小点,随后这些小点越来越多最终形成明暗相间的条纹!实验升级后证明光是一种粒子并且还具备波的特征 , 也就是光的 波粒二象性 !
双缝干涉延迟实验
虽然双缝干涉实验已经让人赞不绝口,不过科学家们还是在这个实验上再次升级。将光源变成一次发射一粒的电子!电子要通过这块挡板只能随机通过两条缝隙。
我们知道,要干涉就必须有对象,没有对象怎么被干涉?然而这一次实验结果出事了,即便单个电子在随机穿过两条缝隙后依然在最后形成了干涉条纹。
这个结果震惊了科学界!为什么单个电子能够自我干涉?难道他还有一个分身?更诡异的是当我们观察电子是通过哪一条缝隙时,干涉条纹消失了。当取消观察时,干涉条纹又神奇的出现了!冥冥中仿佛有一双眼睛窥视着我们,只能让我们看到电子穿越缝隙的路径(粒子特征)或者电子的干涉条纹(波特征)其中之一!
双缝干涉之延迟选择量子擦除
看到这里,你也许认为上面的实验会有很多未知的漏洞,我们观察电子时已经打扰了电子的正常运动导致电子属性改变,只是我们没有办法找出这个因素。接下来科学家用更加复杂精密的方法来做双缝实验。将一个光子分离成一对纠缠的光子A和B(纠缠的量子能够无视距离影响对方)
AB分别做双缝干涉实验(互不影响的环境),而B距离感应屏比A远,这样 A会比B要先到达感应屏 。当我们在B实验中放置相机观测到B通过双缝的路径时,A实验的干涉图像消失,显然,纠缠的两个光子是互相影响了,B得不到的波属性A也得不到。接下来,我们通过技术手段把B获得的路径信息擦除,然后A和B都出现了干涉条纹。这里就出现了两个个非常诡异的现象。 测量到光子的路径信息只是”泄露”,没有主管观意识去查看,干涉条纹会消失!把这个路径信息擦除掉,干涉条纹又会出现!
更诡异的是,实验中我们设定从B获得路径信息时,A早就已经到达了感应屏形成了图像!这时候擦除B的路径信息,A感应屏已经”拍好照”的图像会鬼魅般地变成干涉条纹!
让人难以理解的“宇宙程序”
很多人一开始认为,观察光子路径就是人类意识干预了实验。不过我们从最后一个实验得知,在延迟选择实验中,测量到的路径信息,你看与不看,宇宙程序它已经认定了你泄露了天机!光子波动属性就被隐藏了!我们得不到干涉图像。如果我们把这个泄露的天机抹除掉,宇宙程序马上修复了光子的波动性,让我们得到了干涉图像。没想到的是,我们人类在实验室上利用量子纠缠钻了个空子,让图像形成之后再得到路径信息。接着我们再去选择是泄露还是擦除,宇宙程序任然按照原来的指令执行了。让已经形成的图像变了回去(曾经不干涉的光子,在曾经又干涉了。这话很绕)?这是不是意味着我们找到了一个宇宙程序的BUG,用现在的决定,改变了过去!还是另有其他原因?我们生存的宇宙,这个看不到边无比真实的世界,难道是一个设定好的“程序”?或者说宇宙这个看似无比完美运行的世界其实还有一些漏洞。如果人类将来利用这些漏洞未来的世界会发展成什么样子?
很多人听过双缝干涉实验后会认为“玄之又玄”,于是有了“遇事不决量子力学”。实际上,量子力学是人类了解宇宙底层逻辑的敲门砖,而双缝干涉实验则是量子力学核心的显现,下面我聊聊双缝干涉实验到底多“诡异”,它揭示了宇宙哪些核心?
薛定谔的猫、上帝掷骰子、平行宇宙哪来的?
由于量子太过抽象,因此我们把量子现象过渡薛定谔的猫,再回到双缝干涉实验就容易理解了。这是薛定谔给我们理解量子力学的好例子。
话说啊,有个封闭的盒子里面装一只猫,然后一个量子装置连着毒药瓶,猫的生死取决于量子性质,如果量子发生衰变猫死,反之则没事。换句话说,猫的生死间接表现了量子的性质。实验的问题是猫最后是死的,还是活的?
各路大佬都说出了自己的看法,主流看法有三个:
哥本哈根学派,波尔:这是只 量子猫,它在盒子里的概率是100%的可能性是活的,同时100%可能性是死的,两种状态同时存在,叠加在一起,当你打开盒子一瞬间,猫的生死才会表现出来,生死的结果是随机的。
爱因斯坦、薛定谔:猫50%是死的,50%是活的,我们打开盒子之前它就已经死了,或者还活着,我们打开盒子看到的是结果,而不是诱发结果。
爱因斯坦:波尔,按你的意思是打开盒子时,上帝发现有人要来看结果了,赶紧摇号决定了猫的生死?
波尔:你别管上帝能干什么!
休·埃弗雷特:安静安静,我还没说呢!首先波尔的叠加态我是认同的,但是100%+100%=200%,打开盒子前与打开盒子后应该守恒才对,因此我认为如果打开盒子时猫死了,那么活着的猫应该存在于另外一个世界中——平行宇宙。
爱因斯坦、薛定谔、波尔:你厉害, 我们竟然不知道如何证明你说的是错的!
故事先到这里,看得懂看不懂没关系,先说结果:波尔是对的!而平行宇宙证明不了,最多算假说。在这个故事中有几点很重要:
1. 猫即死又活的状态——叠加态
2.打开盒子意味着观测, 观测会让叠加态随机坍缩为单一状态 。(上帝摇号!)
3.前两点, 打开前与打开后,还隐含了波粒二象性。 (下面再说)
光到底是什么?——双缝干涉的“诡异”
接下来我们看双缝干涉,这事要先从牛顿说起,源于一个看似简单,然而谁都答不上来的问题——光是什么东西?
图:牛顿三棱镜实验
牛顿作为当代学霸,为光学做出了不少贡献,比如阳光是由多种光混合而成的三棱镜实验就是他搞出来的。他认为光又能反射,还折射,运动轨迹会改变,就像乒乓球扔墙上会反弹回来,因此它最小的单位应该是粒子。
十九世纪,托马斯·杨反击牛顿,他只干了一件事,让一束光通过了两条小缝,后面有块感应屏。“按照牛顿的说法”这个实验的结果应该是两条条纹,如下面:
实际上却出现了下面的结果:
于是老杨说光就像下面的水波一样,其实波:
通过缝隙的光波变成了两个波,两个波接触干涉,出现和水一样的现象,于是在屏幕上显示出干涉条纹。
这就是双缝干涉实验,但是诡异的事情是量子力学的双缝干涉实验。
好景不长,随着黑体辐射实验,普朗克发现光能量是一份一份不连续的,爱因斯坦发现光电效应,即光与原子作用时是以粒子的形式交换能量的。于是大家重新审视双缝实验,对它进行升级。
既然光是一粒一粒的,那么我们把光子一粒粒通过双缝会发生什么?(实际实验用的是电子,道理是一样的)
大佬们很快地照着两条缝像机关枪一样发射一梭子电子,显示屏上随机出现大量的粒子,但站远点看这些粒子同样组成了干涉条纹。既然是粒子,为何会发生干涉?
于是有人认为一大堆电子在一起挤来挤去的所以发生了干涉,有点像儿童乐园里的海洋球,当你跳进去,海洋球虽然是一粒一粒的,但是会像波一样往向外扩散,于是就有了虽然是粒子但同样会发生干涉。但真的只是这样吗?
图:实验结果
科学家再次做了实验,改成了“手枪式”发射,“啪”打一发电子,电子到达了感应屏,再打下一发,杜绝了两个电子在运动时发生干涉。然而科学家懵了,快点打和慢点打,结果是一样的,屏幕还是出现了波动性,才会出现的干涉条纹,而不是两条条纹!也就是说单个电子发生了干涉,那么它和谁干涉呢?就两个缝,它只能选一个穿过,另一个缝没有电子出来,上哪干涉去?
为了解决了问题,大佬们就在实验中安上了光电探测器“去看它”,看看电子是如何完成干涉的!结果发现电子老老实实的在感应屏上形成了两条条纹。大家:上帝,告诉我发生了什么!
上面的故事已经给了答案:波粒二象性
先按不靠谱的平行宇宙理论来解释:你不看时,电子即从A缝过去,又从B缝过去,然后发生了干涉,你可以理解为量子出现了一个分身。如果你去看它,宇宙就分裂了,如果电子从A缝进入,那么平行宇宙中的电子就从B进入,是我们去探测引起了宇宙的分裂,导致处于两个宇宙中的电子(分身)无法形成干涉。
波尔的解释:前半段和平行宇宙一样,电子处于叠加态,这是一个波的状态,但当你去看它,就随机坍缩成了粒子态。
爱因斯坦:无法解释!肯定有什么我们还没弄清楚的,反正上帝是不会摇号的。
图:我们印象中电子在原子中是这样的
图:实际上它是这样的,因此也叫电子云,具有概率性、波动性。
到目前的科学研究成果来看,波尔是对的。量子具有波粒二象性,这是量子力学的核心。一个电子同时具有波与粒子的性质。
当它没有坍缩成粒子时,虽然也是以单个粒子发射,但波的性质也在发挥着作用,当你发单个电子就类似于发射出水波,你发射了一堆电子,其实就是在发射一堆波,这些波都会按着干涉后的结果显示在感应屏上。当你探测电子,它坍缩成单独的粒子性质,所以一堆电子打出去,没有发生干涉,只出现两条条纹。
如果不理解量子的性质就会觉得,我不看出现干涉条纹,我看了却不干涉了,似乎有点“恐怖”,理解了就理所当然了,量子力学是目前人类发现的宇宙最底层的逻辑,它可以解释宇宙起源,大到宇宙的构成,小到组成宇宙最小结构的粒子的形成。
光波、声波、电磁波,它们都有什么共同特征?
本文全面详细介绍了量子力学领域,深刻又有趣,并且与宏观世界大相径庭的概念、现象、以及实验。
主要探讨了: 不确定性原理、波粒二象性、量子纠缠、超光速信息传递,以及双缝干涉、光子延迟、量子擦除等实验原理,还有实验结果的分析、观测的本质 ,等诸多方面的内容。
对于目前科学已知的内容,进行了详尽客观的解读,对于目前还无法科学解释的现象,进行了多个视角的观点论述。
本文力求把量子力学领域几个著名有趣的认知,完整客观的呈现出来,并希望能够展现出,微观世界的不可思议与叹为观止,引发更多的思考和想象。
海森堡 不确定性原理指出,无法同时精确的获得粒子的 位置 和 动量 。用公式来表达就是: ?x * ?P ≥ h / 4π ——其中?x是位置变化量(粒子位置的不确定性),?P是动量变化量(粒子速度的不确定性 * 粒子质量),h是普朗克常量。
这个公式的内涵就在于, 位置变化 与 动量变化 的乘积是一个 常数。 这就意味着,位置变化与动量变化是此消彼长的关系——位置变化越小,动量变化就越大,动量变化越小,位置变化就越大。
显然,变化区间越大就越不确定,变化区间越小自然就越确定。所以,体现出的就是位置和动量无法同时精确获得,也就是:知道粒子的位置,就不知道它的速度,知道粒子的速度,就不知道它的位置。
事实上,与位置和速度相关的物理量,比如 能量和时间、角动量和角度 等共轭量,通过数学推导,也会得出同样的结论:是无法同时精确获得这些成对的共轭量的。
那么,为什么微观的粒子,会呈现出这种不确定性呢?
来自 海森堡 的解释是:不确定性是粒子内在的秉性,既波粒二象性,要测量粒子准确的位置就要波长尽量短,波长越短就越呈现非连续化的粒子特性,对被测粒子动量干扰就越大,而要测量准确的速度就要波长尽量长,波长越长被测粒子的位置就越不精确。
我们可以从两个角度,来理解这个粒子的不确定性:
第一种,确定就需要观测,而观测本身会影响观测结果,导致不确定。
事实上,这里隐藏着一个基础事实, 就是信息的传递依赖于光。 也就是说,无论使用什么技术手段进行测量,我们想要获得测量的信息,就必须使用光传递信息,而这也就是为什么, 信息的传递不能超越光速的原因所在 。
于是测量微观粒子,我们就需要用光去照射它,然后捕获这个被粒子散射的光,从而得到粒子相关的状态信息。
那么,如果要确定粒子的瞬时位置,就需要使用波长尽量短的光去照射,因为被测粒子的位置如果处在光波的波峰之间就得不到位置信息——相当于光线绕过了粒子,所以光的波长越短——几乎走直线,获得的位置信息就越精确。
但由于波粒二象性,此时光呈现粒子性,成为不连续的光子,并且波长越短,频率就越高,能量也就越大。因此,高能量的光子撞击到被测量的粒子上,就会干扰粒子的速度和运动方向——导致无法获得其精确的速度信息。
那么,如果要确定粒子的速度,显然就需要光的波长尽可能的长,因为波长越长,频率就越低,能量也就越小,此时光子对粒子速度和运动轨迹的影响也就越小。而速度等于距离除以时间,我们并不关心粒子的瞬时位置,只需要准确的距离信息。
所以,波长越长测量粒子的速度就越精确。但同时,粒子的瞬时位置就会因为波长更长,而变得更加不精确。
可见,这个不确定性, 一个层面是来自于信息的传递依赖于光,另一个层面是光子与被测量粒子,它们之间产生了互相影响 ——这就导致了观察结果包含了观察行为的影响,而不是观测前的状态结果。
第二种,粒子的状态呈现一种概率(由波函数描述),是粒子固有的秉性,其精确性受到了更为深刻和本质的限制。
这种观点认为,在观测之前,粒子的状态就是不确定的,与测量无关。并且在测量之前,粒子的状态可由波函数描述为一种概率分布,而测量会让波函数坍缩,代表着粒子状态由不确定转变为确定的原因和过程。
当然,客观上我们无法获得测量之前的粒子状态, 所以你说在测量之前,粒子状态是无法确定的,还是确定但无法获得的,这又有什么区别呢?
这就像,看不到就等于不存在,不知道就等于没发生,测不到就等于不确定。或者就像说,没有超光速的粒子,等同于有超光速但无法感知的粒子,黑洞里没有光,等同于光无法逃逸出黑洞一样。
那么,这个 粒子固有的秉性 ,其实就是 波粒二象性 与 量子纠缠 ,接下来我们就深入展开来说说这两种特性。
一切微观粒子(包括电子、质子、中子,光子,甚至某些原子和分子),都具有波粒二象性,这表明微观粒子,既可以有 连续的波动性 ,也可以有 非连续的粒子性。
波动性, 就是有波长和频率(包括波峰、波谷、相位等),以及会发生干涉和衍射效应。 粒子性, 就是有非连续(离散)的运动状态,比如任意时刻,有确定的空间位置和速度,而与其它粒子相互作用时,会表现出能量和动量的不连续性,并且不会发生干涉和衍射效应。
而波粒二象性是遵循 互补原理的 ,即波动性与粒子性,在同一时刻是互斥的,不会在同一次测量中出现。所以,两者在描述微观粒子时就是互斥的——不会在实验中产生冲突。
也就是说,如果试图去观测获取粒子的粒子状态,则就会让粒子的波动性(干涉和衍射效应)消失。反之,如果粒子呈现了波动性(比如干涉效应),那么这时候粒子的粒子状态(位置和动量)就是不确定的。
事实上,波动性和粒子性是粒子不可分割的属性,并且有着如下的关联:
从宏观角度来看, 波的波长越长频率越低,越呈现波动性,波的波长越短,频率越高,越呈现粒子性; 而从微观角度来看, 粒子的状态由波函数描述,既可以表现出像波干涉和衍射一样的叠加性,也可以以概率的形式表现出粒子的非连续性。
这里需要注意的是, 粒子波动性的叠加性,并不是像宏观机械波那样的,是介质振动的相互叠加。而是波函数所描述的概率的叠加,也就是粒子可能出现的位置和动量性质的概率叠加。
也正因为此,波粒二象性与不确定性,其实是等价的。 可以说,正是因为粒子有了波动性,才会让其呈现出了不确定性,并且观测就会让其波动性消失,转变为粒子性的确定性。
甚至,我们可以认为,任何物质(包括宏观)都有波动性,只不过波长越短——超级短,就无法呈现可观测的波动性了,转而表现出了粒子性。
最后,值得说明的是,波动性和粒子性,是实验中客观展现的 性质 ,而 不是本质 ,两者分别代表着 不同的抽象模型 ,从不同的角度去解释微观粒子的状态特征,并且很明显这两种模型都是从宏观角度出发,进行的唯象形态描述。
那么,至于微观粒子真正的形态,目前科学上并没有统一的图像,只能进行不同角度侧写拼凑——如同盲人摸象,但可以想象,在更高的层次上,粒子的波粒形态必然又是统一的,因为它们是同一个共同的 本质 ,所表现出来的可观测性质。
量子, 是一个物理量,如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子——比如光子就是光量子。通俗地说,量子是能表现出某物质或物理量特性的最小单元。
量子纠缠, 是指在量子力学中,当两个或两个以上的粒子在彼此相互作用后,由于各个粒子所拥有的特性已综合成为整体性质,所以无法单独描述各个粒子的性质,只能描述整体系统的性质,这时粒子个体之间,所表现出的神秘关联现象(超距作用),就是量子纠缠。
比如,一对纠缠态的光子,每个光子都处在叠加态——此时状态不确定,并且可以分别在任意不同的地方,那么对其中一个光子的测量,就会让其叠加态坍缩为确定态,同时另一个光子的状态,也会瞬间产生同步变化——由叠加态坍缩为确定态。(多个光子之间也可以形成纠缠态,那么一个变化,其它的都会一起同步变化)
这其中的关键就是,另一个光子的状态本来是不确定的,但它仿佛知道了,被测量光子状态的变化,然后自己做出了相应的变化。
要知道,被测粒子的状态在测量之前,可以是叠加态中的任意值,而另一个粒子,在被测量粒子确定状态之前,是无法确定自己的状态的。 这意味着,量子纠缠,让两个粒子产生了神秘的——超越时间和空间的——关联现象。
需要注意的是,量子纠缠并不是一个粒子瞬间(超光速)对另一个粒子产生了影响,而是它们的共有整体状态,跨越了一个广域的距离,从而同步变化—— 也就是局部会服从配合整体性质的变化,也就是个体会出现统计属性。
事实上,可以说万事万物最终都是由量子所构成的,而万事万物从微观到宏观,又充满了局部与整体的关系,那么量子纠缠,就会在跨越广域的距离上,产生广泛的、根本性的相互影响。
所以,并不是观察行为会影响量子系统,而是 任何存在、任何行为,都无时无刻不在影响着量子系统的状态,并且这个状态变化的影响,会以量子纠缠的形式,进行超距的相互影响。
因此,从这个角度来看,无论观测还是不观测,微观量子层面的确定性信息,都会因为量子系统的特性,而无法获得。
而从图灵的角度来看,为什么我们无法知道量子的全部确切状态?这是因为测量状态的机器,是由量子所构成(一切物质在最底层都是由所量子构成),这就形成了一个循环不可计算的递归,让被计算实体与计算实体发生了纠缠。(宇宙的奥秘:递归、分形、循环)
那么,可以想象,我们想要的确定性,其实只有建立在微观不变化、不互相影响的基础之上才行。但此时上层的一切都会不存在——或是与现在完全不同的形式存在。
最后,宏观上并没有量子纠缠效应,就像宏观物体没有微观的波粒二象性一样,可以理解为这些微观量子效应,在宏观被压制在了无法被观测的状态——数学求解得出无限小,极限就是不存在,或理解为存在于未知领域。
然而,在我们无法观测和感知的背后,却存在一个完整统一的整体,并涵盖了所有的未知领域, 只是我们的认知,不一定就存在一条信息路径,可以抵达那个统一整体的终极本质。
显然,我们依赖光去获取信息,就不能超越光速去获得信息。但量子纠缠,却可以无视距离和光速,产生状态之间的同步变化,那么这岂不是可以超光速传递信息了?
结论是,量子纠缠依旧无法超越光速传递信息。
首先, 我们需要明白,传递信息要有 输入信息 和 读取信息 ,完成这两个步骤才算是完成了一次信息的传递。
其次, 处在纠缠态的粒子,测量会导致其叠加态塌缩——这是 输入信息 ,接着瞬间,其它与之纠缠粒子产生变化——我们测量这些变化就是 读取信息 。
那么问题就是,都是测量,哪一次代表了输入信息,哪一次又代表了读取信息呢?
输入与读取有先后顺序,那么我们的测量也就需要有先后顺序。 显然,测量的先后顺序就依然需要光速来传递信息,以确定测量的先后。
最后, 我们无法向一个量子纠缠系统中,输入我们想要的数据,因为微观状态是完全随机的——不可控。所以,粒子纠缠态之间的同步变化,所能传递的,仅仅是一些随机的信号——属于噪音而不是信息——我们无法从中获得任何有用的信息。
以下阐述的实验均被实际验证,这里只简述过程和原理。
单电子双缝干涉实验
一个一个发射电子,通过双缝挡板,击中挡板后的侦测屏,每次等到侦测屏显示电子击中后,才发射第二个电子。反复发射多个电子,最终在侦测屏上,记录电子所形成的图案,显示出了干涉条纹。如果封闭一个缝隙,变成单缝隙,侦测屏则没有干涉条纹出现。
这个实验,与光的干涉实验完全不同,因为光的干涉是光通过双缝,形成两组光波,最后产生干涉条纹。而这里是单个电子通过双缝,最终也形成了干涉条纹,前者是群体,后者是个体。
这里有几点需要说明的是:
第一, 多个电子在侦测屏上,形成的干涉条纹,是符合波函数的概率分布预测的。
第二, 一个电子在侦测屏上,只能是一个点,而不是干涉条纹,需要多次发射电子,才能形成概率分布图案——产生干涉条纹,此时单个电子在群体事件中,显示出了统计属性。
第三, 干涉条纹意味着,单电子通过双缝时,产生了波的干涉效应,相当于电子同时通过双缝,产生了两个波源,然后自己和自己干涉。
第四, 如果单电子每次只是随机的通过一条缝隙,就不会在双缝之后自己和自己干涉,那么最终的图案就不会出现干涉条纹,而只会是两条明亮的条纹。
这个实验说明了,单电子具有波动性,就是 电子在空间中的位置是不确定的——呈现一种概率分布,这种位置分布的概率能够叠加,形成干涉效应——就是增加某些位置出现的概率,减少某些位置出现的概率。
最终,电子击中侦测屏,它的波动性转变为粒子性,也就是概率给出结果——位置确定。而多个电子形成的干涉图案,就会体现出一个电子波动性的自我干涉叠加。
因为实际上,在干涉条纹中,所有点都对应着电子能够随机到的位置,而只有电子呈现波动性,并且自己和自己干涉,才会产生那些明暗点的位置概率,从而形成明暗条纹。否则,就只会有两条亮色条纹的位置概率,而不会有暗色条纹的位置概率。
双缝干涉实验——观察者效应
与单电子双缝干涉实验一样,只不过,在双缝挡板前进行观测,以确定单电子如何穿过双缝。结果是,观测到每个电子随机穿过了一条缝隙,侦测屏最终的干涉条纹消失,只有两条明亮的条纹。但去除观测手段,干涉条纹就会再次出现。
这个实验正是说明了,波粒二象性的 互补原理, 如果 观测 ,粒子给你展现的就是粒子性,并且波动性就退化了;而 如果不观测 ,那么粒子的波动性就又会出现,并且粒子性就退化了。
惠勒光子延迟实验
一个光子,射入一个半透镜,那么就有一半的概率穿过,一半的概率被反射,这是一个量子随机的过程。
第一种情况, 在半透镜两边,放置侦测屏,就可以检测光子是穿过半透镜,还是被半透镜反射。结果显示,每个光子,只会随机让一个侦测屏产生亮点,多次之后依旧是亮点。这说明了,光子每次只会穿过或被反射。
第二种情况, 利用两个反射镜,将可能穿过半透镜,或是被半透镜反射的光子,继续导入第二个半透镜的两面。也就是说,如果光子穿过第一个半透镜,则会进入第二半透镜的一面;如果光子被第一个半透镜反射,则会进入第二个半透镜的另一面。
要知道,第二个半透镜依然有一半的概率,让光子穿过或反射。那么接下来,在第二个半透镜的两边,放置侦测屏,以检测穿过或被反射的光子。
结果显示,每次发射一个光子,经过多次,在其中一个侦测屏上,出现出了干涉条纹。
这说明了,一个光子进入第一个半透镜,同时穿过和被反射,然后按照两条路径运行的光子,同时进入第二个半透镜的两面,又继续同时穿过和被反射。
那么,在第二个半透镜的两面,都会有穿过和反射的光子。通过调整光子的相位,就可以让光子自己和自己,在一面相互抵消,而在另一面相互干涉。从而在一个侦测屏上,产生干涉条纹。
第三种情况, 在光子经过第一个半透镜的过程中,并没有第二个半透镜,这相当于第一个情况,光子会穿过或被反射。然后在光子完成第一个半透镜的量子随机后(穿过或被反射),再“延迟”加入第二个半透镜。
结果显示,与第二种情况一致,光子会同时穿过和被反射。这说明了,我们“延迟”加入第二个半透镜的行为,让光子已经确定第一种情况的选择后,神奇的切换到了第二种情况。 这样,我们的延迟选择,就决定了已经完成的选择。
对于这个实验, 惠勒后来引用玻尔的话说: 任何一种基本量子现象,只在其被记录之后才是一种现象,我们是在光子上路之前,还是途中来做出决定,这在量子实验中是没有区别的。光子在通过第一块透镜,到我们插入第二块透镜这之间,它到底在哪里,是个什么,是一个无意义的问题,我们没有权利去谈论它,因为它不是一个客观真实!
量子擦除实验(Quantum Eraser Experiment)
这个实验有些复杂,但已经被成功验证。
第一步, 我们创造出一对纠缠态的光子,间隔发射,通过双缝板——上面有缝A和缝B,并且这一对光子,在通过双缝的时候不分离。但我们不知道这一对光子,是通过A、还是B、还是同时通过AB。
第二步, 这一对光子,通过双缝后,如果在A处会被分离为纠缠态的两个光子——A1A2,如果在B处会被分离为纠缠态的两个光子——B1B2,其中A1和B1将会进入透镜,被集中到D0侦测屏,最终显示出干涉条纹。
此时,D0上的光子,无法区分哪些是A1,哪些是B1,这就意味着,不知道这些光子来自哪个缝隙——A或B。显然,是纠缠态的一对光子同时进入了AB,然后同时在A分离出A1,在B分离出B1,并且A1和B1在透镜之后产生干涉,才能在D0显示出干涉条纹。
第三步, A2和B2将会进入偏光镜,分别走向不同的方向。并且去向的地方, 均在远离D0的位置, 这说明了在A2和B2仍在运动的过程中,D0已经检测到光子。
第四步, A2进入半透镜,有50%的概率进入侦测屏D4,另外50%的概率进入半透镜,之后又有50%的概率(50%中的50%就是25%的概率)进入侦测屏D1,和50%的概率(50%中的50%就是25%的概率)进入侦测屏D2。
同理,B2进入半透镜,有50%的概率进入侦测屏D3,另外50%的概率进入半透镜,之后又有50%的概率(50%中的50%就是25%的概率)进入侦测屏D1,和50%的概率(50%中的50%就是25%的概率)进入侦测屏D2。
总结起来就是, A2有50%概率进入D4,25%的概率进入D1,25%的概率进入D2;B2有50%概率进入D3,25%的概率进入D1,25%的概率进入D2。(D1D2无法区分A2B2)
第五步,D1和D2侦测屏,都没有反应。 那么,这个时候如果D4有反应,说明是A2(状态塌缩),与之纠缠态的A1——会在D0产生反应;如果D3有反应,说明是B2(状态塌缩),与之纠缠态的B1——会在D0产生反应。
于是,通过D4和D3的反应(不会同时反应),我们就知道了在D0处的是A1还是B1,然而此时,D0处的干涉条纹就消失了。显然,这是因为我们确定了这一对纠缠光子,通过AB缝的准确路径,于是这一对光子的状态塌缩,展现出了粒子性,只能在AB中选择一个通过。
第六步,D1和D2侦测屏,其中一个有反应。 此时,A2和B2都有概率形成这个结果,那么我们依旧无法确认,A1和B1谁在D0处产生了反应,即意味着,A1和B1都在D0处,产生干涉,自然干涉条纹就再次出现在了D0。
至此,整个实验完成,有两点值得说明:
首先, D1和D2侦测屏有没有反应是概率,从结果来看:在D1或D2有反应的时候,D0有干涉条纹—— 这相当于擦除了路径信息 ;在D1和D2没有反应的时候,D3或D4会有反应—— 这相当于拥有了路径信息 ,此时D0干涉条纹消失。
其次, 从第三步可知,光子抵达D1234的距离,要长于D0。所以,D1234有没有反应的时候,D0早已出现过了反应——形成条纹,但D0处的条纹是否干涉,依然受控于,后发生的D1234的反应。
这个实验的重点,在于揭示了: 粒子状态的塌缩,不在于观察者,或是什么样的观察者——包括观测技术设备、有无智能和意识等等,而是在于信息路径的构建。
前面的实验,已经毫无悬念的,证明了微观粒子的波粒二象性——与宏观现象完全的不同,让人感觉匪夷所思,并且十分难以理解。
但实验结果是不容置疑的,于是,人们纷纷针对实验结果,开始了各种虚幻的自我解读,以下列举出一些具有代表性的解释:
没有粒子只有波
我们处在无处不在的,就像是汤一样的量子场之中,这些汤(能量场)就像波一样运动。只有在我们观测时候,粒子才会从汤中涌现出来——就像被我们的观测行为给召唤了出来一样。
没有波只有粒子
粒子的运动速度超级快,而我们的观测(曝光)速度又太慢。所以,当我们进行一次观察的时候,所捕获到的图像,其实是粒子快速去到不同地方的样子,而在我们看来就是粒子同时出现在多个地方的样子,所以我们会说粒子有波一样的状态。
没有波也没有粒子
粒子,只是我们根据观测的属性,抽象成了一个宏观唯象的模型。然而,在不同的情况下,根据观测属性,又符合宏观波的唯象模型,所有才会有波粒二象性,这种在宏观下矛盾的状态描述。其实,这些微观物质的本质,是非波非粒的,具体是什么,我们也不知道,目前没有具体的图像。
有波有粒子
微观的物质,在没有观测的时候,是“云”或“雾”的形态,以波的形式运动,只有在观测的时候,才会汇聚到“一点”成为一个粒子。为什么会这样?这是因为“云”或“雾”的能量状态,因为观测受到的干扰,能量丢失变小只能形成一个点,就是粒子。
高维度宇宙
微观物质,是高维度宇宙的投影,它们的行为状态变化莫测,是因为我们只能看到了,这些高纬度投影的片段,所形成的难以理解的运动轨迹和特征形态。
多重宇宙
微观粒子波的特性,是来自于,无数个平行宇宙的粒子,同时叠加的影像。然而,一旦观测,平行时空就会分离,单个粒子就会出现在特定唯一的当前时空。
路径积分表述
在纯粹数学上,路径积分表述,不采用粒子的单独唯一运动轨道,取而代之的是所有可能轨道的总和。使用泛函积分,就可以计算出所有可能轨道的总和。也就是说,微观粒子从一个地方,去到一个地方,会选择可能的所有路径(包括同时穿过双缝),而观测会让观测位置与粒子之间,形成唯一的路径,从而选择消失。
实验质疑
在这些实验中,是如何发射一个电子或是一个光子的,存在一个电子或是一个光子吗?首先假定,有电子和光子,然后再在实验中发现了这些粒子的波动性,这不是一种矛盾吗?
哥本哈根诠释
微观粒子在测量之前,其空间位置是不确定的,所以试图讨论,测量之前的粒子轨迹和路径是没有意义的。所有的不解和困惑,都显然来自于,讨论了不应该讨论的主题。
总结
事实上,一个成功的解释,是可以预测未来所有的情况的。如果可以做到,那么这个解释基本就是一种正确的视角。 而波函数则完美的以概率的形式,预测描述了微观粒子的波动性与粒子性,只不过人们还迫切想要知道的是,这些概率到底是如何形成的——也就是在观测之前都发生了什么。。
追根究底,其实是人们,并不满足于概率与不确定性——这个答案,因为在我们根深蒂固的意识里——一切都是确定的,这是源自于我们的本能和感知的结论。
而本质原因就在于, 连接微观到宏观的是概率 ,但我们处在宏观,理论上概率已经形成了确定的结果,所以我们只能看到确定性,而看不到不确定性。并且,我们还试图用宏观的感知,去解读微观的一切。
或许,束缚我们的就是宏观,而无法抵达微观的路径——就是信息。
在宏观上,通常观测,我们认为就是观察和测试,而在科学上,观测是用技术手段去获取物质的状态信息。那么在微观上,观测一定会落实到,用光子去获取信息,因为信息的传递依赖于光。
然而事实上,在微观实验中,比如 量子擦除实验 ,并非需要我们去完成观测量子的行为和过程,而只要构建出可以观测到的 可能性 ,便可以让量子状态发生变化。
可见,观测对微观的扰动,并非是观测行为本身,而是观测所能够获得信息的可能性,也就是说: 一旦形成信息获取的路径,便可以对微观产生实质性的影响。
这很有趣, 或许信息和路径,才是上层因果逻辑的本质 。而路径又可以形成循环,这样因果和逻辑也就可以形成循环,成为无穷无尽的无限。
而这也可能就是宏观物体,没有微观波动性(不确定性)的原因所在,因为宏观物体的信息路径,显然已经是被确定存在的了。
那么,在不确定性原理中, 试想粒子同时确定的位置和动量信息,是否是客观存在的?
如果是存在的,只是粒子的 固有秉性——波粒二象性, 限制了我们对这个确定信息的获取,那么,我们获取微观信息与确定性本身就是矛盾的,因为获取形成了信息路径,导致不确定,而只有不获取,确定性信息才会客观存在。
这就像,一间不透光的屋子,我想知道屋里子有什么,可一旦有光进入,屋里子的东西就会与光结合产生原来没有的东西,所以我永远无法获得屋里子原有的信息——或许屋里子没有信息,也可能会有无数种信息,谁知道呢?
这一切都在于,我们依赖光去获取信息,更在于我们的本质,都是由同样的量子信息所构成—— 然而,或许一切都是信息,而万物皆比特。 (数学的本质与万物的关联(第二版))
什么是外汇交易市场短期波动
波动是自然界中一种常见的物质运动形式。说到波动就要说到波源了,能够持续不断的发出波的物体或物体所在的初始位置,我们称之为波源。波动是波源的振动或者扰动在空间中逐点传播时形成的运动形式。
介质中质点受到相邻质点的扰动而随着运动,并将振动形式由远及近的传播开来,这样就形成了波。波传递的是振动能量,而波的传递过程中介质中粒子的实际位置并没有发生改变,比如人的声带并不会随着声波的传播而离开口腔。
有波动必然伴随着振动,有振动并不一定会产生波动现象。振动仅局限于极小范围的空间,是质点在平衡位置附近的往复运动;而波动是介质中大量质点的集体振动,呈周期性变化。
波的分类
为了更好的理解,我们需要将波进行分类。波的分类方法很多,从不同的角度会得到不同形式的分类。
按振动方向和波的传播方向的不同可分为横波和纵波,方向一致的称为纵波,反之称为横波;按振动源的物理量属性,可分为矢量波和标量波;按波阵面的形状,可以把波分成球面波、柱面波和平面波。
不过最常用的还是按性质来分类。波主要可以分为4种:机械波、电磁波、引力波、物质波。
1,机械波
机械波是由机械振动产生的,机械波只能在介质中(实物)传播,不能在真空中传播。没有传播介质,即使机械振动再强烈也不会产生机械波。在不同介质中机械波的传播速度也不同。机械波可以是横波,也可以是纵波。水波、声波、地震波等都是机械波。
2,电磁波
电磁波是以波动形式传播的电磁场,且能够在真空中传播。整个宇宙空间中充满了电磁波和电磁场。在真空中电磁波的传播速度恒定为光速。电磁波是横波,电磁波的电场方向、磁场方向及传播方向三者互相垂直。我们通常按频率或者波长将电磁波分为无线电波、微波、红外光、可见光、紫外光、X光射线、γ射线。电磁波主要用来通信。
3,引力波
引力是时空弯曲,引力波是引力源在时空中扰动而产生的涟漪。引力波的传播也不需要介质。电磁波对应着电磁场,而引力波对应着引力场。早在1916年,爱因斯坦就基于广义相对论预言了引力波的存在,直到100多年后,人类才首次观测到了引力波。通常只有大质量天体的活动才能产生比较明显的引力波。
4,物质波
任何微观粒子都具有波粒二象性,既可以当做波,也可以当做粒子对待。物质波又叫德布罗意波,是一种概率波,这与机械波不同。概率波是指物质所有可能存在的位置的概率分布函数。根据不确定性原理,粒子的运动并没有确定的轨迹,只能确定粒子在空间中某时某地可能出现的概率,其中概率的大小会受到波动规律的支配。
波的相关概念
各种形式的波都具有周期性。通常我们用波长和频率来定量的描述波。
波长指的是波在一个振动周期内传播的距离,形象点来说就是相邻的两个波峰或波谷的距离。
波的频率是指波在单位时间内完成周期性变化的次数,即周期T的倒数f=1/T。频率越高,说明波的周期性变化次数越快,所具有的能量也就越高,比如伽马射线的频率就极高,其穿透能力也极强。波的频率通常由波源决定。
此外波还有振幅和相位的概念。
振幅是表示波在传播过程中的振动强度的物理量,简单点理解就是波谷到波峰的高度的一半,这就是波的振动幅度。波在实际传播过程中,随着能量的衰减,振幅会逐渐减小。
相位可能有点不好理解,简单点来说就是周期性振动过程中质点在特定时刻所处的位置,同一频率的两列波之间还存在相位差的概念。
为了更好的理解,举个例子,在一平面直角坐标系内有一列频率恒定的波,当我们沿横轴平移时,其相位就发生了变化;如果我们沿纵轴进行压缩,波的振幅就会变小。
波的传播速度
不同形式的波在同一介质中的传播速度不同。比如先看见闪电,后听见雷声,就是因为光波比声波在空气中的传播速度快。
同一类型的波在不同介质中的传播速度也不一样。比如声波在海水中的传播速度比在空气中的传播速度快。在空气中声音的传播速度为340米每秒,在海水中大约为1500米每秒。
频率一样的同类型波在同一均匀介质中的传播速度相同。不同频率的同类型波在同一介质中的传播速度不一样,频率越高速度越慢,折射率也就越大,光的色散现象就是因此产生的。
波的速度v、频率f及波长λ三者之间的关系为v=fλ,对于在真空中传播的电磁波,这里的v就变成了光速c,并且光速在真空中是恒定的。
波的传播规律
不管是机械波还是电磁波,它们的传播规律都大致相同。波在传播的过程中,会发生折射、反射、衍射、干射、散射、吸收及偏振等现象。
折射和反射主要发生在不同介质的界面上。波由一种介质进入另一种介质时,传播方向的改变称之为波的折射,比如筷子在碗中的弯折现象,就是由于光的折射造成的。当遇到障碍物反射回来继续传播的现象称之为波的反射,比如回声、镜像等现象就是反射的体现,当入射波与反射波发生干扰时还会形成驻波。
波的衍射是指波在传播过程中遇到障碍物时可以绕过障碍物并继续传播的现象。当障碍物的尺寸跟波的波长差不多或者比波长小时,才能观察到明显的衍射现象。
波的干涉其实就是波的叠加现象,两列或两列以上的波在一定条件下才能发生干涉现象。当两列波的频率相同、振动方向相同、相位相同或相位差恒定时才会发生相干。两列波的干涉会使波的振幅相互加强或者减弱。
波的散射是指由于传播介质的不均匀引起的,当波通过不均匀的介质时,一部分会偏离原来的传播方向。比如太阳光通过大气层时就会发生散射,天空之所以是蓝色的就与散射有关。散射与折射是不同的,散色发生在同一介质中,而折射发生在不同介质的分界面上。
(晚霞就是由于大气对阳光的散射形成的)
通常波以球面形式向远方传播,因为能量守恒,随着距离的增加,波的强度与能量都会发生衰减。而且当波在传播时,还会被介质吸收,不同介质对波的吸收能力也不同。至于偏振是指横波的振动方向与传播方向并不完全垂直,而偏于某些方向的现象。只有横波才会发生偏振现象,纵波不会发生偏振。自然光都是属于非偏振光。
粒子的波动性
任何微观粒子都具有波动性,波粒二象性是微观粒子的基本属性。关于这个性质,可能很多人理解不了,读完下面的内容,希望能够对大家有所帮助。
人们很早就意识到物质是由微粒构成的。正是因为有了光,我们才能看到这多彩世界。关于光的本质的讨论,一直是一个热门话题。在17世纪诞生了微粒说与波动说两个观点。
最早认为光是微粒,是伽森荻提出来的。牛顿继承和发展了这个观点,并很好的解释了光的直线传播、色散、折射和反射现象。不过微粒说在解释几束光相遇后互不妨碍的继续传播等现象时,却遭遇了极大的困难。与牛顿同时代的惠更斯另辟蹊径提出了波动说。在那个时代,惠更斯认为光是一种机械波,由发光物体振动产生,靠以太这种弹性介质进行传播。这一学说很好的解释了微粒说所不能解释的现象,但却在解释光的直线传播和色散等方面遇到了困难。
关于光究竟是粒子还是波的争论一直持续了很久。直到19世纪,麦克斯韦在总结了前人关于电磁现象的研究之后,建立了统一的电磁理论,预言了电磁波的存在。由于理论计算出来的电磁波的传播速度等于当时已用实验测得的光速,于是麦克斯韦认为光也是电磁波。后来赫兹通过实验证明了电磁波的存在。关于光的衍射实验更加印证了光具有波动性。
似乎一切都要尘埃落定了。不过1905年爱因斯坦提出了光量子假说,认为光也像电子一样具有粒子性,并成功的解释了光电效应 。于是人们意识到光同时拥有粒子和波的双重属性。
1924年,德布罗意提出了物质波的假说,认为其它物质和光一样也具有粒子和波的双重属性。后来科学家们通过电子衍射实验,证明了电子也具有波动性。科学家们发现不仅光子、电子,连分子原子也具有波动性。于是科学家们认识到了波粒二象性具有普遍意义。
1927年海森堡提出了不确定性原理。同年,肯纳德给出了另一种表述。
海森堡认为,测量行为会对粒子产生干扰,当粒子的位置被确定时,其动量就不能被确定,反之亦然,因此不确定性原理也叫测不准原理。按照肯纳德的表述,位置与动量的不确定性是粒子的内秉属性,与测量行为无关。当今物理学界普遍认为,不确定性是粒子的内在属性,并不是因测量扰动造成。粒子的波动性正是源于粒子状态的不确定性。
多普勒效应
多普勒效应之所以单独提出来讲,是因为它的重要性。多普勒效应适用于一切波动现象,医院中的B超或者彩超就是利用了多普勒效应进行成像。
多普勒效应,相信很多人都听说过。当波源与观察者发生相对运动时,观察者接收到的波的频率相对于波源发生改变的现象叫做多普勒效应。
当一辆摩托车迎面驶来时,摩托车声音的音调(音调就是声音的频率)会在由远及近的过程中逐渐升高,声音会变得尖锐;如果摩托车背向而去,摩托车发出的声音的音调会逐渐降低,变得深沉。
如果波源是固定不变的,不动的观察者接收到的频率与发射频率相同。如果波源和观察者发生相互运动,当他们相互远离时,频率会降低;让他们相互靠近时,频率会升高。
由于运动是相对的,波源在动,还是观察者在动,效果都是一样的。多普勒效应并不是由于波源向外发出的频率因运动发生了改变,而是由于运动造成观察者所接收到的完全波的个数发生变化,在我们看来似乎是波源发出的波的频率发生了改变。
多普勒效应的应用比较广泛,除了上述的B超,在交通中常用的还有多普勒测速仪。科学家们还根据多普勒效应产生的光谱红移现象,发现了我们与河外星系正在相互远离。
感谢阅读,欢迎关注!
做外汇交易的朋友经常听到短期波动这个词,但是对于它的定义却不是很清楚。希望下面的解释有助于大家的理解。国际外汇市场上外汇价格的每天波动幅度大致在0.8%至1.5%之间,波动幅度大时可达到5%以上。这种对于外汇市场经常出现的短期剧烈波动,经济学上称之为对信息的过分反应。也就是所说的短期波动。对于外汇市场的短期波动目前各家说法不一,但总的来讲大致可以归结为如下三种解释。第一:外汇交易的现货价格与外汇汇率的长期均衡价格发生偏离。第二:外汇的短期均衡价格波动幅度总是会超过它长期的均衡价格波动幅度。这种解释假设所有会影响外汇市场的因素都会对外汇的价格波动产生作用,但这种作用的生效在时间和渠道上有差别,造成短期均衡价偏离长期均衡价。第三:外汇交易市场不是一个有效率的市场,即外汇价格的波动不能充分反映市场在一定时期内出现的全部信息,导致外汇的实际价格经常过分地偏离均衡价格。外汇市场的短期剧烈波动可能是由于市场参与者主观地排斥某些信息,片面地接受或过分地接受某些信息,使外汇价格过分扭曲;也可能是某些影响外汇波动的信息掩盖了其他一些同样重要的信息,造成外汇价格大起大落。其次,如果外汇市场不是一个有效益的市场,就会导致一些纠偏的行为在市场出现,如以牟利为动机的投机者介入市场、需要准确地发布影响市场的信息、政府干预等。这些纠偏的行为有时会使实际价格与均衡价格趋于一致,有时却会进一步扭曲市场的价格波动。外汇市场在长期可能是一个信息有效率的市场,但在短期却还远远没办法证明。总之,对于外汇市场的短期波动有三种解释。这三种解释之间并不是对立的关系。对于投资人来说,掌握影响市场短期波动的因素是更加重要的功课。
关于“为什么当年双缝干涉延迟实验让科学家感到恐怖?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!